Centro de Investigación en Alimentación y Desarrollo, A.C.

CARACTERIZACIÓN DEL GEN DE LA LACTATO DESHIDROGENASA DEL CAMARÓN BLANCO Litopenaeus vannamei

Por: Bertha Guadalupe Leal Rubio

TESIS APROBADA POR LA: COORDINACIÓN DE TECNOLOGÍA DE ALIMENTOS DE ORIGEN ANIMAL

Como requisito parcial para obtener el grado de

MAESTRÍA EN CIENCIAS

Hermosillo, Sonora

Diciembre de 2010

APROBACIÓN

Los miembros del comité asignados para revisar la tesis de Bertha Guadalupe Leal Rubio, la han encontrado satisfactoriamente y recomiendan que sea aceptada como requisito parcial para obtener el grado de Maestría en Ciencias.

Dra. Gloria Yepiz Plascencia

Director de Tesis

Dra. María Islas Osuna

Asesora

Dra. Teresa Gollas.

Asesora

DECLARACIÓN INSTITUCIONAL

Se permiten y agradecen las citas breves del material contenido en esta tesis sin permiso especial del autor, siempre y cuando se dé crédito correspondiente. Para la reproducción parcial o total de la tesis con fines académicos, se deberá contar con la autorización escrita del director del Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD).

La publicación en comunicaciones científicas o de divulgación popular de los datos contenidos en esta tesis, deberá dar los créditos al CIAD, previa autorización escrita del manuscrito en cuestión del director o directora de tesis.

Dr. Ramón Pacheco Aguilar Director General

C.I.A.D., A.C.

Este trabajo fue realizado en el Laboratorio de Biología Molecular de Organismos Acuáticos, de la Coordinación de Tecnología de Alimentos de Origen Animal del Centro de Investigación en Alimentación y Desarrollo, A. C. El apoyo financiero para su realización fue proporcionado por el Consejo Nacional de Ciencia y Tecnología (CONACyT), a través del proyecto 98507 a probado a la Dra. Gloria Yepiz y a una beca para estudios de maestría.

AGRADECIMIENTOS

Agradezco a CONACYT por haber proporcionado la beca de maestría y al proyecto 98507 aprobado a la Dra. Gloria Yepiz, por los fondos para realizar este trabajo de tesis.

Al Centro de Investigación en Alimentación y Desarrollo por permitirme ser parte de esta institución, a los que fueron mis maestros, gracias por transmitirme sus conocimientos y al mismo tiempo por brindarme su amistad.

A la Dra. Gloria Yepiz, gracias por todo su apoyo durante esta etapa de mi vida, estoy eternamente agradecida, por ser un gran ejemplo a seguir, porque con su experiencia me enseñó muchas cosas importantes. Ha sido una excelente mamá académica, me encanta trabajar a su lado.

A la M.C. Alma Peregrino por sus enseñanzas en el laboratorio, por tenerme paciencia y por estar al pendiente en el trabajo de mi tesis, mil gracias por todo su apoyo.

A los miembros de mi comité de tesis Dra. María Islas Osuna y a la Dra. Teresa Gollas por su disponibilidad e interés y por sus acertadas aportaciones a mi tesis.

A mis grandes amigos Salvador, Antonio, Gaby, Blanquita, Linda, Fátima, Oly, Claudia, Priscila por estar siempre conmigo en las buenas y en las malas, darme todo su apoyo y recibirme con un fuerte abrazo siempre que lo necesité, doy a gracias Dios haberme dado la oportunidad de conocerlos, los quiero mucho.

A mis compañeros del laboratorio de Biología Molecular: Antonio, José, Salvador, Oly, Aurora, Idania, Carlitos, Priscila, Manuel, Sandra, Enrique, por haberme brindado todo su apoyo durante esta etapa, por tenerme la paciencia y transmitirme su conocimiento

A mis compañeros de la maestría que estuvieron conmigo en las buenas y en las malas, siempre apoyándome

A mis sobrinos Ana Janeth, Noemí, Ana Karen, Edith, Chayito, Cirlita, Noyra, Fausto Jesús, Marito, Alberto, Alan y a los pequeñines Jermy, Edmir, Cirlita, Alejandrito, Luna por hacerme tan feliz y ser parte de mis fuerzas para salir adelante.

A mis tíos Tony y Mundo porque siempre han estado al pendiente y me han hecho parte de su familia, gracias por todo.

A la familia Romo Ruelas, Castro Ocaño, Montoya Gutiérrez, Moreno Ibarra, Espinoza Espinoza por estar al pendiente de mí y darme su apoyo incondicional, los quiero mucho.

A mis amigos Irving, Carlitos, Gerardo, Pamela, Mariana, Faby, Viridiana, Bianca y a todas las personas que han compartido conmigo esta etapa de mi vida y que por error omití.

DEDICATORIA

A Dios

A ti, agradezco que me hayas dado vida y salud, así como la oportunidad de disfrutar y compartir con mi familia y amigos una de las etapas más felices de mi vida, y porque nunca me dejaste flaquear ni perder la fé en los momentos más difíciles.

A mis padres Humberto y Ana María

Gracias por haber formado en mí el deseo de superación y anhelo de triunfo en la vida, por compartir mis pequeñas victorias y dolorosos fracasos, siempre recibiendo de ustedes una palabra de aliento que me dio la fuerza para seguir luchando

Gracias Mami por el apoyo incondicional que me has dado y por soportar mi ausencia a lo largo de este tiempo, porque siempre me recibes con un abrazo lleno de amor y felicidad

A mis hermanos Rosita, Ramoncita, Chayito y Mario

Doy gracias a Dios porque me permitió tenerlos como hermanos, porque siempre han estado conmigo en los momentos llenos de felicidad y de tristezas, gracias porque siempre tienen una palabra de aliento y un fuerte abrazo, por todo su apoyo, pero principalmente por tanto amor ...los AMO

APROBACIÓN	
DECLARACIÓN INSTITUCIONAL	
AGRADECIMIENTOS	5
DEDICATORIA	6
ÍNDICE	7
ÍNDICE DE TABLAS	9
ÍNDICE DE FIGURAS	
RESUMEN	
INTRODUCCIÓN	
ANTECEDENTES	14
Morfología y Anatomía del camarón	14
Músculo, hepatopáncreas y branquias	14
Vías centrales de metabolismo energético de carbohidratos	
Glucólisis	
Lactato Deshidrogenasa	
JUSTIFICACIÓN	21
HIPÓTESIS	
OBJETIVO GENERAL	
OBJETIVOS PARTICULARES	
MATERIALES Y MÉTODOS	
Extracción de DNA genómico	
Diseño de oligonucleótidos específicos	
Amplificación del gen de LDH	
Clonación y secuenciación	
Análisis de las secuencias nucleotídicas	

ÍNDICE

RESULTADOS Y DISCUSIÓN	. 30
Extracción de DNA genómico	. 30
Diseño de oligonucleótidos para obtener el gen de la LDH	. 30
Caracterización y estructura del gen de la Lactato Deshidrogenasa Preparación de dos fragmentos del gen de la LDH	. 34 . 34
Secuencia nucleotídica de cDNA de LDH de branquias	. 35
Secuencia nucleotídica de cDNA de LDH de músculo	. 37
Secuencia nucleotídica y deducida de aminoácidos del gen de la LDH de camarón blanco L. vannamei	. 40
Composición de bases de los exones e intrones del gen de la LDH de camarón blanco L.vannamei	. 45
CONCLUSIONES	. 52
BIBLIOGRAFÍA	. 53

ÍNDICE DE TABLAS

Tabla		Pág.
1	Oligonucleótidos específicos utilizados para obtener el gen de la LDH	25
2	Condiciones de PCR para obtener los fragmentos de DNA	27
3	Oligonucleótidos específicos para cDNA de branquias y fragmento 3' del	
	gen de la LDH	31
4	Oligonucleótidos para obtener el fragmento 5' del gen de la LDH	32
5	Identidad de la LDH a nivel de nucleótidos con proteínas homólogas de	
	otras especies	38
6	Composición de bases de los exones	46
7	Composición de bases de los intrones	47
8	Posiciones de los exones, codones divididos y regiones de unión a	
	ligandos en la LDH	49
9	Extremos 5' y 3' de los intrones y secuencias consenso	51

ÍNDICE DE FIGURAS

Figura		Pág.
1	Morfología externa del camarón blanco L. vannamei	14
2	Esquema general de la glucólisis aerobia y anaerobia	17
3	DNA genómico extraído de camarón blanco L.vannamei	30
4	Ubicación de oligonucleótidos usados en el gen de la LDH de camarón	
	blanco <i>L. vannamei</i>	33
5	Análisis de geles de agarosa al 1 % teñidos con SYBR-SAFE de los	
	fragmentos 5 y 3' del gen de la LDH	35
6	Secuencia nucleótidica de cDNA de la LDH de branquias de camarón	
	blanco <i>L. vannamei</i>	36
7	Alineamiento entre las dos regiones diferentes entre los cDNAs de	
	branquias y músculo	37
8	Secuencia parcial de cDNA de la LDH de músculo de camarón blanco	
	L. vannamei	39
9	Secuencia nucleotídica y deducida en aminoácidos de la LDH	43
10	Mapa del gen de la LDH de camarón blanco <i>L. vannamei</i>	44

RESUMEN

La lactato deshidrogenasa (LDH) (EC.1.1.1.27) es una enzima que cataliza la síntesis de lactato a partir de piruvato y cuya función es muy importante en condiciones anaerobias. La hipoxia (baja concentración de oxígeno) es un problema recurrente en los cultivos de camarón y también en los organismos silvestres. Existe poca información sobre las LDHs de crustáceos. Recientemente se caracterizaron dos cDNAs de la LDH, uno obtenido a partir de branquias y otro de músculo de L. vannamei (Rodríguez-Armenta, 2007) Soñanez-Organis et al., (datos no publicados), pero se desconoce el gen, su estructura y los elementos involucrados en su regulación. Por lo anterior, en este trabajo se caracterizó el gen de la LDH de L. vannamei. Para obtener la secuencia nucleotídica se utilizaron técnicas de reacción en cadena de la polimerasa (PCR), clonación y secuenciación, seguido por análisis bioinformático de las secuencias nucleotídicas obtenidas. El gen de la LDH se obtuvo a partir de dos fragmentos, un fragmento 5' de 4233 pb y el otro de 3' de 3338 pb, logrando obtener un tamaño de 7571 pb. El gen de la LDH de L. vannamei posee 8 exones y 7 intrones y al comparar el gen con los cDNAs de branquias y músculo de L. vannamei se pudo determinar la presencia de corte y empalme alternativo, que produce dos proteínas que solo difieren solo en una pequeña región y que corresponden a subunidades diferentes. El gen de la LDH de L. vannamei tiene estructura similar a los de vertebrados teniendo el mismo número de intrones y en posiciones similares, aunque con tamaños diferentes, demostrando alta conservación desde vertebrados hasta invertebrados.

INTRODUCCIÓN

La acuicultura es una actividad de gran desarrollo a nivel mundial, con un volumen global superior a los 50 millones de toneladas y un valor de alrededor de 50 mil millones de dólares anuales, contribuyendo con el 50 % en la producción de organismos acuáticos (http://noticias.universia.es/ciencia-nn-tt/noticia/2006/05/24/598475/acuicultura-cultivo-mar.html). En México, resalta la aportación económica de la camaronicultura en los estados de Sonora y Sinaloa; en particular en Sonora, en la última década se ha llegado a obtener hasta 130 mil 201 toneladas al año, contribuyendo con alrededor de 70 % de la producción nacional (http://www.panoramaacuicola.com/noticias/2010/09/23/acuicultura_renovado _nicho_de_oportunidad_en_mexico.html).

El músculo de camarón es esencial para el movimiento, actividad que demanda gran cantidad de energía. Esta energía proviene principalmente de la hidrólisis del ATP que es usado para las contracciones musculares y que a su vez, es producido en la mayor proporción por la fosforilación oxidativa y el transporte de electrones. A su vez, la producción de ATP es dependiente de la respiración (Hill, 2007). El principal combustible del músculo es la glucosa proveniente de los alimentos o de la degradación del glucógeno almacenado.

Los carbohidratos son la primer fuente de energía en la mayoría de los animales. El metabolismo de carbohidratos inicia con la glucosa que es metabolizada por medio de la glucólisis hasta la formación de dos moléculas de piruvato para la producción de energía en forma de ATP a nivel sustrato (Mathews *et al.*, 2003). El piruvato a su vez, es usado para la producción de acetil coenzima A que ingresa al ciclo de Krebs, y para que el ciclo de Krebs mantenga un flujo adecuado, es necesario el oxígeno como elemento aceptor final en la fosforilación oxidativa y transporte de electrones. La falta de oxígeno ocasiona la acumulación de piruvato. En esas condiciones anaerobias, el piruvato acumulado es reducido a lactato por la enzima lactato deshidrogenasa (Fukasawa *et al.*, 1986).

La lactato deshidrogenasa cataliza la conversión de piruvato a lactato en presencia de NADH principalmente en condiciones anaerobias, cuando el organismo se encuentra en condiciones extremas de movimiento o en condiciones bajas de oxígeno, obteniendo de esta forma ATP. La mayoría de los estudios que se han realizado en esta enzima han sido en vertebrados, principalmente en humanos y ratones (Fukasawa *et al.*, 1986), mientras que en invertebrados la información aún es escasa.

Recientemente en el camarón blanco *Litopenaeus vannamei* se caracterizaron dos cDNAs de la lactato deshidrogenada que tienen pequeñas diferencias y fueron aislados de branquias y músculo (Rodríguez-Armenta, 2007) Soñanez-Organis *et al.*, (datos no publicados), pero se desconoce el gen y su estructura, y más aún los elementos involucrados en su regulación. Por lo anterior, en este trabajo se caracterizó el gen de la LDH contribuyendo con información básica sobre este gen en camarón.

ANTECEDENTES

Morfología y Anatomía del camarón

El camarón blanco *Litopenaeus vannamei* pertenece al Phylum arthropoda y a la familia penaeidae. Este crustáceo se encuentra distribuido en las aguas costeras del océano Pacífico. Al igual que en nuestro país, el cultivo de esta especie ha tenido un gran crecimiento en los países Asiáticos, siendo China el país líder de esta actividad (Martínez-Cordova *et al.*, 2009).

En el camarón se distinguen 3 segmentos principales: el cefalotórax, el abdomen y el telson (Figura 1). Los apéndices del cefalotórax son las anténulas, antenas, mandíbulas, maxilas, maxilípedos y pereiópodos. El abdomen está constituido por seis segmentos y en cada uno hay un par de apéndices llamados pleópodos cuya función es natatoria. En el telson se encuentran los urópodos, que sirven también para la natación. La mayoría de los órganos que tienen alta actividad metabólica se encuentran en el cefalotórax, encontrándose también aquí, las extremidades que utilizan para su movimiento (periópodos), además del sistema respiratorio, sistema nervioso y sistema digestivo (Martínez-Cordova, 2002).

Figura 1. Morfología externa del camarón blanco *Litopenaeus vannamei*. (Martínez-Cordova, 2002).

Músculo, hepatopáncreas y branquias

El músculo es un tejido fibroso necesario para los movimientos del cuerpo que son realizados por medio de contracciones y durante los cuales, se utiliza energía en forma de ATP. El principal combustible para el músculo es la glucosa que proviene de los alimentos o del glucógeno almacenado (Mathews *et al.*, 2003).

El hepatopáncreas o glándula digestiva es uno de los órganos de mayor importancia en el sistema digestivo de los decápodos. Este órgano realiza diferentes funciones como la absorción, secreción de enzimas, almacenamiento de nutrientes y eliminación de desechos a través de las vacuolas (Sánchez-Paz *et al.*, 2006). Es también órgano central en el metabolismo, con funciones similares al hígado de los vertebrados (Dall *et al.*, 1990). El hepatopáncreas se localiza a un lado del estómago y está compuesto por una serie de lóbulos que se conectan con el ducto digestivo por conductos (Hill y Gordon, 2006).

Las branquias son el órgano respiratorio y tienen la capacidad de realizar el intercambio de gases, oxígeno y dióxido de carbono. Tiene una estructura en forma de láminas o filamentos muy vascularizados y posee cilios para crear corrientes de agua. Los crustáceos, carecen de cilios produciendo la ventilación por contracción muscular (Castelló Orvay, 1993). En decápodos el caparazón cubre los apéndices torácicos delimitando dos cámaras branquiales donde se sitúan las branquias que llegan a ser desde 3 a 26 de cada lado (Castelló Orvay, 1993).

Vías centrales de metabolismo energético de carbohidratos

Hasta hace pocos años, se pensaba que en los crustáceos la fuente primaria de energía eran las proteínas (Sánchez-Paz *et al.*, 2006), en contraste con los mamíferos y aves, que utilizan carbohidratos y lípidos como fuente de energía. Sin embargo, estudios recientes han demostrado que los carbohidratos también son la principal fuente de energía para los crustáceos (Sánchez-Paz *et al.*, 2006).

La glucosa es el principal monosacárido presente en la hemolinfa y fuente esencial para la síntesis de quitina, glucógeno, DNA, RNA (Sánchez-Paz *et al.*, 2006; Tacon, 1990). Además, la concentración de glucosa en la hemolinfa es estrictamente controlada por la hormona hiperglucémica (CHH), la cual también tiene un papel muy importante en la reproducción, muda y en otros procesos fisiológicos (Sánchez-Paz *et al.*, 2006; Soñanez-Organis, 2006; Verri *et al.*, 2001) El principal metabolito para la producción de energía es la glucosa, la cual es degradada a piruvato por la vía de la glucólisis. A partir del piruvato

se genera acetil coenzima A, la cual entra al ciclo de Krebs, en donde se produce poder reductor, que a su vez es usado durante la fosforilación oxidativa y transporte de electrones para la producción de ATP, que es la molécula universal proveedora de energía para la gran mayoría de las reacciones enzimáticas y para la contracción muscular (Mathews *et al.*, 2003).

Glucólisis

La glucólisis es una ruta metabólica que ocurre en el citoplasma celular y consta de 10 reacciones para producir 2 moléculas de piruvato a partir de una molécula de glucosa (Figura 2). Algunas de las enzimas que participan en la glucólisis son finamente reguladas por moduladores alostéricos, concentración de sustratos y productos, así como por modificaciones postraduccionales (Gladden, 2004; Mathews *et al.*, 2003). Las enzimas con mayor regulación en esta vía metabólica son la hexocinasa (HK), fosfofructocinasa (PFK) y la piruvato cinasa (PK), las cuales son puntos clave en el metabolismo energético (Gladden, 2004; Mathews *et al.*, 2003).

El piruvato es el producto final de la glucólisis aerobia y es un metabolito central con distintos destinos metabólicos, los cuales dependen del estado de oxigenación de la célula. En algunas células aerobias con tasas de glucólisis muy elevadas, el NADH generado no puede reoxidarse a tasas semejantes en las mitocondrias, por lo que es necesario que el NADH que se produjo en la oxidación del gliceraldehido-3 fosfato se utilice para la reducción del piruvato a lactato por la enzima lactato deshidrogenasa. La reducción del piruvato a lactato es un punto clave de regulación que permite un equilibrio de óxido-reducción en la célula cuando existe un gasto elevado de energía (Fukasawa *et al.*, 1986; Hill y Gordon, 2006; Mathews *et al.*, 2003). Como antes se mencionó, cuando la célula se encuentra en bajas concentraciones de oxígeno se acumula NADH. Esta acumulación es contrarrestada con la producción de lactato a partir del piruvato y la generación de NAD. Esto se debe a que las mitocondrias solo pueden utilizar NADH en presencia de oxígeno, produciendo NAD, energía (ATP) y agua. Por lo anterior, se produce menor cantidad de energía por molécula de glucosa metabolizada (Mathews *et al.*, 2003). Este trabajo se enfoca a la enzima lactato deshidrogenasa que es punto clave cuando el

organismo se encuentra en condiciones extremas de movimiento o en bajas concentraciones de oxígeno.

Glucosa нк Glucosa -6- fosfato GPI Fructosa -6- fosfato PFK Fructosa-1-6-bifosfato Aldolasa Gliceral dehido-3-fosfato Dihidroxiacetona fosfato TPI Gliceraldehido 3 fosfato NAD GADP DH 1-3-bifosfoglicerato 4 D P PGK 3-fosfoglicerato PGM 2-fosfoglicerato 4DP ENOL ATP Fosfoenolpiruvato PΚ 2 Piruvato Lactato LDH

Figura 2. Esquema general de la glucólisis aerobia y anaerobia. Abreviaciones: HK, hexocinasa; GPI, glucosa fosfatoisomerasa; PFK, fosfofructocinasa; TPI, triosa fosfato isomerasa; GADP, gliceraldehido-3-fosfato deshidrogenasa; PGK, fosfatoglicerato cinasa; PGM, fosfoglicerato mutasa; ENOL, enolasa; PK, piruvato cinasa; LDH, lactato deshidrogenasa. Modificado de (Mathews *et al.*, 2003; Soñanez-Organis, 2010).

Lactato Deshidrogenasa

La lactato deshidrogenasa (E.C. 1.1.1.27) es una oxido-reductasa que cataliza la reducción de piruvato a lactato en presencia de NADH en condiciones anaerobias (Gladden, 2004; Imagawa *et al.*, 2006). La LDH de vertebrados, es una proteína tetrámerica de 140 KDa formada por tres subunidades llamadas LDH-A, LDH-B y LDH-C. En vertebrados, la LDH- A se ha encontrado en músculo e hígado, la LDH- B se ha reportado en el corazón y la LDH-C es típica de testículos (Imagawa *et al.*, 2006).

Las subunidades LDH-A y LDH-B forman 5 isoenzimas de LDH conocidas como LDH-1, LDH-2, LDH-3, LDH-4 y LDH-5 en vertebrados. La subunidad A de humanos es de 274 a 361 aminoácidos, ya que existen diversas isoformas como la isoforma 1 de 332 aminoácidos, la 2 con 274, la 3 con 361, la 4 de 274 aminoácidos y por último la 5 es de 241 aminoácidos, mientras que la LDH-B es de 332 y la LDH-C es de 334 (GenBank, http://www.ncbi.nlm.nih.gov). Además de las similitudes en los tamaños, estas subunidades tienen muy pocas diferencias en las secuencias primarias (Fukasawa *et al.*, 1986; Imagawa *et al.*, 2006).

La subunidad LDH-A difiere de la subunidad LDH-B de humanos en 90 aminoácidos, los cuales se encuentran en diferentes posiciones (GenBank No. Q5U077-1). En testículos se ha reportado una LDH específica que es un homotetrámero formado por la subunidad C que difiere de la A y la B en 80 aminoácidos localizados en distintas posiciones de la secuencia primaria (GenBank No.PO7864-1)(Takano *et al.*, 1989). Estas discrepancias derivan de las diferencias de las longitudes de los cDNAs. Por ejemplo, el cDNA de LDH-A de humanos es de 1,584 pb (Fukasawa y Li, 1987), mientras que el de LDH-B es de 1,418 pb (Takeno y Li, 1989) y el de LDH-C es de 1236 pb (Sakai *et al.*, 1987).

Las diferencias de las LDHs ocurren no solo a nivel de la secuencia primaria, sino también en los genes que son bastante grandes. Aunque existen pocos datos sobre las LDHs de invertebrados, se han reportado genes distintos para LDH-A, LDH-B y LDH-C en vertebrados. Por ejemplo, en el ratón *Mus musculus*, el gen de LDH-A tiene un tamaño de 12,851 pb y está interrumpido por 6 intrones o secuencias no codificantes y 7 exones o secuencias codificantes (Fukasawa y Li, 1987). Por otro lado, el gen de LDH-B de humanos tiene un tamaño de ~25,000 pb, es interrumpido por 6 intrones y contiene 7

exones (Takano *et al.*, 1989), mientras que el gen de LDH-C, que se expresa en los testículos en mamíferos, es de ~40,000 pb en humanos y es también, como el anteriormente mencionado de LDH A, interrumpido por 6 intrones y tiene 7 exones. La conservación de la estructura de los genes es también evidente en la posición y tamaño de los intrones en los genes de LDH-A, LDH-B y LDH-C en humanos.

El gen de humanos de LDH-B posee 7 exones. El exón 1 es de 43 aminoácidos y contiene los primeros 41 aminoácidos, el exón 2 corresponde a 40 aminoácidos y son las posiciones de 43 a 82, el exón tres es de 59 aminoácidos y son las posiciones 82 a 140, el exón 4 es de 59 aminoácidos y son las posiciones 140 a 198, el exón 5 es de 40 aminoácidos con las posiciones 198 a 237, el exón 6 es de 41 aminoácidos y se encuentra en las posiciones 237 a 278 y por último, el exón 7 es de 55 aminoácidos correspondiente a los residuos 279 a 333. La localización genómica ha demostrado, que 2 de éstos genes son localizados en el mismo cromosoma, pues los genes LDH-A y LDH-C se encuentran en el cromosoma 11, mientras que el gen de LDH-B se encuentra ubicado en el brazo corto del cromosoma 12 en humanos (Takeno y Li, 1989).

En contraste en invertebrados, poco se conoce sobre genes de LDH. En el nemátodo *Caenorhabditis elegans*, el gen de LDH es de tan solo 1,106 pb y contiene 2 pequeños intrones (57 y 47 pb) y 3 exones (Mannen *et al.*, 1995). Los dos intrones de *C. elegans* están localizados en posiciones similares a las del gen de LDH-B de humano (Takeno y Li, 1989), pero el intrón 1 de *C. elegans* corresponde a la posición del segundo intrón de humano, mientras que el intrón 2 de *C. elegans* es correspondiente al intrón 6 de humano. Lo anterior indica conservación de al menos, algunas de las posiciones de los intrones en las LDHs.

La LDH también se ha estudiado en diferentes organismos invertebrados a nivel de secuencia de nucleótidos. Hasta el momento se conocen secuencias nucleotídicas en especies como los mosquitos *Culex quinquefasciatus* (GenBank No.001600167.1) y *Aedes aegypti* (GenBank No.001662100.1); las moscas de la fruta *Droshophila simulans* (GenBank No.002083821.1) y *Drosophila yacuba* (GenBank No.002093884.1), y el nemátodo *C. elegans* (GenBank No.U15420.1), entre otras.

También en parásitos se ha estudiado la LDH. En *Toxoplasma gondii* se han descrito dos genes que se expresan diferencialmente durante el ciclo de vida del parásito, y

que son llamados LDH1 y LDH2. La comparación del gen LDH1 con LDH2 a nivel nucleótidos, reveló un 64 % de identidad a nivel nucleótidos en la región codificante y 71.1 % de identidad en la secuencia deducida de aminoácidos (Yang y Parmley, 1997). En organismos más distantes, como es de esperarse, hay mas diferencias en las LDHs, de tal forma que es posible distinguir la LDH producida por el parásito *Taenia asiática*, en el suero de cerdo o de pacientes infectados (Huang *et al.*, 2008). Por lo tanto, la LDH es una enzima evolutivamente muy conservada, presente tanto en organismos relativamente sencillos como hasta en los más complejos, ya que su acción en condiciones de bajas concentraciones de oxigeno o en condiciones de mucho movimiento, es esencial para la producción de energía como ATP a nivel sustrato.

En crustáceos, es poca la información sobre la LDH. Hasta el momento hay información para las secuencias de dos crustáceos *Daphnia pulex* y *Petrolisthes cinctipe* (Cristescu *et al.*, 2008). Además recientemente en camarón blanco *L. vannamei* se caracterizaron los cDNAs de la LDH obtenidos de branquias y músculo por Rodríguez-Armenta, 2007, y Soñanez-Organis *et al.*, (datos no publicado) pero se desconoce el gen y su estructura. Por lo anterior, en este trabajo se propuso caracterizar el gen de la LDH en camarón *L. vannamei*.

JUSTIFICACIÓN

En condiciones de bajas concentraciones de oxígeno o extremas de movimiento, se activa la glucólisis anaerobia con la producción de lactato que es generado por la enzima lactato deshidrogenasa, para poder producir energía por una vía alterna.

La LDH es una enzima heterotetramérica codificada por al menos tres genes diferentes, LDH-A, LDH-B y LDH-C en vertebrados. Las subunidades A, B y C, aunque similares, generan al combinarse, diversas isoenzimas que son tejido específicas.

La información sobre LDHs a nivel molecular en crustáceos es muy escasa. Recientemente se caracterizó un cDNA completo obtenido de branquias de *L. vannamei* de una LDH y se estudió su expresión durante la hipoxia, pero no existen datos de la estructura del gen y menos de las regiones codificantes y no codificantes. Por lo tanto, el caracterizar el gen de la LDH permitirá obtener información útil para llegar, en estudios posteriores, a entender la regulación de esta proteína en el camarón *L. vannamei*.

HIPÓTESIS

La estructura del gen de la lactato deshidrogenasa del camarón blanco *L. vannamei* es similar a la de vertebrados y posee varios intrones localizados en regiones equivalentes.

OBJETIVO GENERAL

Caracterizar el gen de lactato deshidrogenasa en camarón blanco L. vannamei

OBJETIVOS PARTICULARES

- Obtener la secuencia nucleotídica del gen de LDH
- Comparar la secuencia del gen con los cDNAs de branquias y músculo.
- Identificar y caracterizar los intrones
- Describir la estructura del gen de LDH

MATERIALES Y MÉTODOS

Extracción de DNA genómico

Actualmente existen diversas metodologías y sistemas comerciales para obtener DNA genómico (gDNA) que resultan en gDNA de calidad suficiente para diversas aplicaciones. Anteriormente se ha usado en el grupo de la Dra. Yepiz-Plascencia, con muy buenos resultados, un método que resulta en DNA genómico de muy buena calidad y que no usa un sistema comercial. Este método fue seleccionado ya que en experiencias anteriores, ha sido difícil amplificar fragmentos específicos de DNA genómico de camarón (Yepiz-Plascencia G., comunicación personal). En este método se usa la extracción de DNA basada en la digestión del tejido con proteinasa K para eliminar las proteínas, seguido de extracción con los solventes orgánicos fenol y cloroformo y la posterior precipitación con etanol del DNA.

Para el aislamiento de DNA genómico se usaron 2 g de músculo de L. vannamei siguiendo el método de (Bradfield y Wyatt, 1983), previamente usado para obtener DNA genómico de camarón (Gómez-Anduro, 2005). El tejido se homogenizó en un mortero estéril frío con 3 ml de buffer de homogenización frío (SDS 0.5%, EDTA 100 mM, pH 8, se agregó 200 µL de proteinasa K (200 µg/ml) y se incubó a 55 °C por 2 h. Posteriormente se centrifugó para remover el material insoluble a 800 g por 10 min a temperatura ambiente. El sobrenadante se extrajo con 5 ml de fenol y 5 ml de cloroformo- alcohol isoamílico (24:1), se mezcló y centrifugó a 800 g por 10 min y este procedimiento se repitió dos veces. El sobrenadante acuoso se transfirió a un tubo nuevo y se agregó 25 ml de etanol frío y al mismo tiempo se mezcló suavemente y se enredó en una varilla de vidrio las fibras formadas por el DNA. Posteriormente, se transfirió la varilla conteniendo el DNA y se resuspendió en 5 ml de NaCl 20 mM Tris-HCl 10 mM, pH 7.5, y se colocó a 65 °C hasta que se disolvieron las hebras. Luego se agregó un volumen de RNasa A, libre de DNasa, teniendo una concentración final de 100 µg/ml y dejando incubar a 60°C durante 30 min. Se agregó después SDS al 0.5% y proteinasa K (100 µg/ml), respectivamente y se incubó a 55 °C durante 1 h. Posteriormente se agregó un volumen igual de fenol-cloroformo-alcohol isoamílico y se centrifugó durante 10 min a 800 g a temperatura ambiente, y se removió la fase acuosa superior a un tubo limpio. El sobrenadante se colocó en un tubo el cual contenía dos volúmenes de etanol al 95 %, repitiéndose el paso de enredar el DNA en la varilla y lavar el DNA en 3 ml de etanol al 70% frío y por último resuspender el pellet en 1.5 ml de Tris 10 mM, EDTA 1 mM, pH 8.0. La concentración se determinó por absorbancia a 260 nm y la pureza por las absorbancias a 260/280 nm. Este DNA genómico se utilizó como templado en reacciones de PCR para obtener los fragmentos correspondientes al gen de LDH.

Diseño de oligonucleótidos específicos

En base a la información obtenida previamente para el cDNA de branquias de la LDH de *L. vannamei* (Rodríguez-Armenta, 2007), se diseñaron oligonucleótidos correspondientes a diferentes regiones. Para el diseño se tomaron las siguientes consideraciones: 1) una temperatura de fusión (Tm) de 58 a 60 °C; 2) 50 % de guaninas (G) y citocinas (C); 3) un tamaño de 18 a 21 nucleótidos; y 4) que no formaran estructuras secundarias. Todos los oligonucleótidos fueron sintetizados de manera comercial por Integrated DNA Technologies (IDT), y las secuencias se muestran en la Tabla 1. Estos oligonucleótidos se utilizaron para obtener la secuencia completa del gen de LDH. También se diseñaron oligonucleótidos durante el avance del estudio de acuerdo a las secuencias nucleotídicas obtenidas y se incluyen en la misma tabla.

Tabla 1. Oligonucleótidos específicos utilizados para obtener el gen de la LDH

Nombre del		Nombre del	
oligonucleótido	Secuencia (5' a 3')	oligonucleótido	Secuencia (5' a 3')
LDHCBFw	GAATGGCCTGCGCCTTCT	LDHStRv	AATTCCGGCCTGAACGTCC
LDH2CBRTFw	ACTGAAGGGATACACCTCCT	LDHB2Rv	AGGAGGTGTATCCCTTCAGT
LDHrtMFw	GGGATACACTTCATGGGCC	LDHBL3Fw	GAGTCTCGTTTGTCCCTTGT
LDHrtMRv	GTAGACACGGCGTAAACAGTA	LDHBGFw	CACAAGGAAAGCATACGTTGC
LDH2rtFw	CCATGGTATCGACAAGGATG	LDHLB1Rv	CATAATTGCCACCATTTGCAGC
LDH2CBRTRv	GTTAGGGTCTGCTTGATGAC	LDHLARv	TCCTCTTTATTGTGGGGG
LDH2rtRv	CATTGTTGCATCACGCGCC	LDHRR2Fw	GCATAATGTATCCCAATCCAGG
LDH2CBRv	CTGGCCTTTAGGCACTCACAC	LDHABFw	CGTTGCATGGAAACTGTCTG
LDHCBRTFw	TGAAAAGTATGATGAACTCC	LDHBL2Rv	TGAGCCGATCACATGGTGC
LDHCBRTRv	AACACATCCTTGTCGATAC	LDHBA3Fw	ACGGATGGATCATTGGCGAG
LDHCBRv	GCCTTAGAACTGAATTCCGGC	LDHAM2Rv	ACGCACACCAGCAACATTAAC
LDH3CBRv	CTCTCCCTCCCTCTGACGAGC	LDHBG7Fw	GTTAATGTTGCTGGTGTGCGT

Número y nombre		Número y	
del oligonucleótido	Secuencia (5' a 3')	nombre del oligonucleótido	Secuencia (5' a 3')
LDHMinFw	ATGGCCTCTGTTCCTGAAATG	LDHBL5Rv	TAGATATCGCCTTGGCTAGTG
LDHBLFw	AATGGCCTGCGCCTTCTCAC	LDHBG6Rv	TCCGTCTTTTATCAAACCTCTC
LDHAmFw	GTGTCAAACCCAGTGGATATC	BGLDH8Fw	TGAGACTCTGGAGCAATGTG
LDHAIRv	AGAAGGCGCAGGCCATTC	BGLDH9Rv	CAGACTTCCAGACCACACTG
LDHGrRv	ACAAGGGACAAACGAGACTC		

Amplificación del gen de LDH

El gen de LDH fue amplificado por PCR usando como templado gDNA y los diferentes oligonucleótidos diseñados, en un termociclador (DNA Engine Dyad, versión 2.0, BIORAD). La estrategia general consistió en obtener por PCR dos fragmentos grandes que se traslapan en una pequeña región. Uno de los fragmentos corresponde a la porción 5' y el otro a la 3'. Para esto se usaron diferentes combinaciones de oligonucleótidos específicos, como se presenta más adelante. Para obtener el fragmento llamado 5', la reacción de PCR se preparó para tener un volumen final de 25 μ L conteniendo 1 μ L de cada oligonucleótido (20 µM LDHMinFw y LDHB2Rv), 1 µL de gDNA (100 ng/µL) y 22 µL de SuperMix (Invitrogen). Las reacciones de PCR fueron realizadas en las condiciones de la Tabla 2 (programa 2 y 3). Para obtener el extremo 3' se utilizaron los oligonucleótidos LDH2CBRTFw y LDH2CBR, para lo cual se preparó una mezcla de reacción con un volumen total de 35 µL, en la cual se usaron 1 µL de cada oligonucleótido (20 µM cada uno), 1 μ L de gDNA (100 ng/ μ L) y 32 μ L de SuperMix (Invitrogen). Las reacciones de PCR fueron realizadas en las condiciones de la tabla 2 (Programa 1) en el termociclador DNA Engine Dyad, (versión 2.0, BIORAD). Todos los productos de PCR fueron analizados por electroforesis en gel de agarosa al 1 % teñido con SYBR-SAFE (Invitrogen).

Pro	ograma 1	Pro	ograma 2	Programa 3					
1 ciclo	75°C 15 min	1 ciclo	75°C 15 min	1 ciclo	75°C 15 min				
	94 °C 3 min		94 °C 3 min	94 °C 3 min					
	94 °C 30 seg		94 °C 30 seg	94 °C 30 seg					
36 ciclos	60°C 1 min	36 ciclos	57°C 1 min	36 ciclos	58°C 1 min				
	68 °C 3 min		68 °C 4 min		68 °C 4 min				
1 ciclo	68 °C 10 min	1 ciclo	68 °C 10 min	1 ciclo	68 °C 10 min				
	4 ° C final		4 ° C final		4 ° C final				

Tabla 2. Condiciones de PCR para obtener los fragmentos de DNA

Clonación y secuenciación

Los amplicones obtenidos con las distintas combinaciones de oligonucleótidos, se clonaron en el vector de clonación p-GEM-T-Easy (Promega). Las características principales de este vector es que tiene sitios múltiples de restricción, un sitio múltiple de clonación, el promotor de la RNA polimerasa T7, genes de resistencia a la ampicilina. La clonación se inició con una reacción de ligación usando como templado los fragmentos obtenidos por PCR para la amplificación de los fragmentos 5' y 3' del gen de LDH. Posteriormente se realizó la transformación en células competentes de Escherichia coli TOP 10 siguiendo las recomendaciones del fabricante (Invitrogen). Las colonias se analizaron por PCR para identificar el fragmento de interés, utilizando los oligonucleótidos universales T7 y SP6. Las colonias positivas fueron utilizadas para inocular 5 ml de caldo LB al que se agregó 5 µL de ampicilina (100 mg/ml), se incubaron por 12-18 h a 37°C, se centrifugó a 12000 g por 5 min y el pellet bacteriano fue usado para el aislamiento del DNA plasmídico por el método de lisis alcalina (Sambrook y Russell, 2001). El DNA plasmídico fue purificado con columnas GFX (Amersham Biosciences). En la columna de GFX se agregaron 500 µL de buffer de captura e inmediatamente se agregó un volumen de 13 µl de DNA plasmídico, evitando la saturación de la columna, posteriormente se mezcló el DNA plasmídico y se dejó incubando durante 1 min. Luego se centrifugó a 12000 g durante 1 min, se retiró el buffer de captura y se agregaron 500 µL de buffer de lavado, luego la columna se centrifugó durante 1 min, se retiró el buffer de lavado y se agregaron 50 µL de agua dejándose durante 1 min a temperatura ambiente, se centrifugó durante 1 min a 12000 g, se detecto el liquido conteniendo el DNA y por último se determinó la concentración del DNA plasmídico purificado por absorbancia a 260 y 280 nm.

Análisis de las secuencias nucleotídicas

Los clones y los diferentes amplicones fueron secuenciados por el método de terminación de cadena con dideóxidos (Sanger *et al.*, 1977) en el Laboratory of Genomic Analysis and Technology Core de la Universidad de Arizona. Las secuencias fueron analizadas utilizando el programa DNASTAR (Lasergene software for Sequence Analysis y Assembly), el cual se utilizó para la depuración de las secuencias de clones o amplicones y el traslape de secuencias, permitiendo obtener el gen de LDH. Las secuencias de los

nucleótidos fueron comparadas con bases de datos, usado el algoritmo BLAST (Altschul *et al.*, 1990) del Nacional Center for Biotechnology Information Bethesda, MD (<u>http://ncbi.nlm.nih.gov/BLAST/</u>). En este programa se llevaron a cabo alineamientos múltiples, (cDNA de LDH contra el gDNA) los cuales permitieron la identificación de las regiones codificantes y no codificantes.

RESULTADOS Y DISCUSIÓN

Extracción de DNA genómico

Para la caracterización del gen de la LDH se usó DNA genómico de músculo de camarón obtenido con el método de extracción de DNA basado en la digestión con proteinasa K para la eliminación de proteínas, seguido de extracción con los solventes orgánicos fenol y cloroformo y la precipitación con etanol del DNA, con las modificaciones detalladas en la sección de materiales y métodos. El DNA obtenido fue analizado por electroforesis en geles de agarosa al 0.8 %. En la Figura 3 se muestra un gel de agarosa, en donde se presenta el gDNA teñido con SYBR-SAFE. En el gel se detectó una banda de alto peso molecular arriba de 12000 pb, que aunque es tenue, detecta el gDNA. La muestra de gDNA tuvo una concentración de 541.12 $ng/\mu l$ y buena pureza de acuerdo a las absorbancias 260/280 nm que fue de 2.0. Este gDNA se utilizó como templado en reacciones de PCR para obtener el gen de la LDH.

Figura 3. DNA genómico extraído de camarón blanco *L. vannamei*, analizado por electroforesis en gel de agarosa al 0.8 % teñido con SYBR-SAFE. Se cargaron 5.41 ug en el carril marcado como 1.

Diseño de oligonucleótidos para obtener el gen de la LDH

Partiendo de la información obtenida del cDNA de branquias de la LDH de *L.vannamei* (Rodríguez-Armenta, 2007) se probaron los oligonucleótidos ya existentes en el acervo del laboratorio utilizando como templado el gDNA de *L. vannamei* y se diseñaron

oligonucleótidos nuevos en base a las secuencias nucleotídicas obtenidas conforme avanzó el estudio. En la Tabla 3 se muestran los oligonucleótidos diseñados para obtener el cDNA de branquias anteriormente por (Rodríguez-Armenta, 2007), y que fueron aquí usados para obtener el fragmento 3' del gen de la LDH.

Tabla	3.	Oligonucleótidos	específicos	para	cDNA	de	branquias	y el	fragmento	3'	del	gen
de la L	DF	H										

Núme oli	ero y nombre del gonucleótido	Secuencia (5' a 3')
1	LDHCBFw	GAATGGCCTGCGCCTTCT
2	LDH2CBRTFw	ACTGAAGGGATACACCTCCT
3	LDHrtMFw	GGGATACACTTCATGGGCC
4	LDHrtMRv	GTAGACACGGCGTAAACAGTA
5	LDH2rtFw	CCATGGTATCGACAAGGATG
6	LDH2CBRTRv	GTTAGGGTCTGCTTGATGAC
7	LDH2rtRv	CATTGTTGCATCACGCGCC
8	LDH2CBRv	CTGGCCTTTAGGCACTCACAC
9	LDHCBRTFw	TGAAAAGTATGATGAACTCC
10	LDHCBRTRv	AACACATCCTTGTCGATAC
11	LDHCBRv	GCCTTAGAACTGAATTCCGGC
12	LDH3CBRv	CTCTCCCTCCCTCTGACGAGC

Para obtener un fragmento correspondiente a la mitad 5' y algunos fragmentos internos del fragmento 3' del gen de la LDH, se diseñaron los oligonucleótidos que se muestran en la Tabla 4 y Figura 4, los cuales también poseen las características antes mencionadas. Para el diseño de estos oligonucleótidos se utilizó el cDNA de branquias (Rodríguez-Armenta, 2007) tomando en cuenta el fragmento 5' y diferentes fragmentos de regiones intrónicas del gen de la LDH.

Tabla 4	. Oligonu	cleótidos para	obtener el	fragmento	5' del	gen de	la LDH
---------	-----------	----------------	------------	-----------	--------	--------	--------

Núm	ero y nombre del		Número y nombre del							
ol	igonucleótido	Secuencia (5' a 3')	0	ligonucleótido	Secuencia (5' a 3')					
13	LDHMinFw	ATGGCCTCTGTTCCTGAAATG	24	LDHRR2Fw	GCATAATGTATCCCAATCCAGG					
14	LDHBLFw	AATGGCCTGCGCCTTCTCAC	25	LDHABFw	CGTTGCATGGAAACTGTCTG					
15	LDHAmFw	GTGTCAAACCCAGTGGATATC	26	LDHBL2Rv	TGAGCCGATCACATGGTGC					
16	LDHAIRv	AGAAGGCGCAGGCCATTC	27	LDHBA3Fw	ACGGATGGATCATTGGCGAG					
17	LDHGrRv	ACAAGGGACAAACGAGACTC	28	LDHAM2Rv	ACGCACACCAGCAACATTAAC					
18	LDHStRv	AATTCCGGCCTGAACGTCC	29	LDHBG7Fw	GTTAATGTTGCTGGTGTGCGT					
19	LDHB2Rv	AGGAGGTGTATCCCTTCAGT	30	LDHBL5Rv	TAGATATCGCCTTGGCTAGTG					
20	LDHBL3Fw	GAGTCTCGTTTGTCCCTTGT	31	LDHBG6Rv	TCCGTCTTTTATCAAACCTCTC					
21	LDHBGFw	CACAAGGAAAGCATACGTTGC	32	BGLDH8Fw	TGAGACTCTGGAGCAATGTG					
22	LDHLB1Rv	CATAATTGCCACCATTTGCAGC	33	BGLDH9Rv	CAGACTTCCAGACCACACTG					
23	LDHLARv	TCCTCTTTATTGTGGGGG								

Figura 4. Ubicación de los oligonucleótidos usados en el mapa del gen de la LDH de camarón blanco *L. vannamei*. Los exones corresponden a los cuadros grises y los intrones a los blancos. El cuadro gris punteado corresponde al exón localizado en el 3'-UTR.

Caracterización y estructura del gen de la Lactato Deshidrogenasa

Preparación de dos fragmentos del gen de la LDH

Como previamente se mencionó en estudios anteriores se determinó la secuencia nucleotídica de un cDNA de branquias de LDH (Rodríguez-Armenta, 2007), pero no existe información sobre el gen de LDH y su estructura. Un fragmento de 4000 pb fue obtenido con los oligonucleótidos LDHMinFw y LDHrtMRv usando gDNA como templado por PCR y se muestra en la figura 5. En el panel A se muestra el fragmento 5' que corresponde al carril 2. Esta banda se intentó clonar en el vector p-GEM pero no se tuvo éxito, debido a que el tamaño del amplicon es grande. En el análisis de 20 colonias no se encontró ninguna con el inserto adecuado, por lo que se optó por obtener mayor cantidad de DNA del amplicon por PCR, el cual se purificó por columna GFX y se secuenció directamente.

Debido a que el tamaño del fragmento era muy grande, fue necesario obtener diferentes fragmentos internos del amplicon, utilizando distintas combinaciones de oligonucleótidos (Tabla 4). Para ello se obtuvo por reamplificación usando como templado el fragmento de 4 Kb, algunos fragmentos internos que fueron clonados, para posteriormente llevar a cabo el análisis de colonia por PCR; por lo general se obtuvieron de 2 a 3 colonias positivas, luego se preparó el DNA plasmídico a partir de cultivos inoculados con las colonias y para determinar la secuencia se purificó por columnas GFX y por último se secuenció.

En el panel B se muestra el fragmento 3' que corresponde al carril 2. Este fragmento se obtuvo con los oligonucleótidos LDHCBRTFw/LDH2CBRv y usando como templado gDNA y se obtuvo una banda muy abundante de un tamaño de 3000 pb. Esta banda se clonó usando el vector p-GEM, se analizaron 17 colonias de las cuales 1 colonia fue positiva, se aisló el DNA plasmídico, se purificó por columna GFX y por último se secuenció con diferentes oligonucleótidos (Tabla 3) hasta obtener todo el fragmento 3'.

Figura 5. Análisis en geles de agarosa al 1 % teñidos con SYBR-SAFE de los fragmentos 5 y 3' del gen de LDH.

Secuencia nucleotídica de cDNA de LDH de branquias

El cDNA de la LDH de branquias es de 1465 pb con una región codificante de 999 pb (Rodríguez-Armenta, 2007) (Figura 6). Esta secuencia tiene la metionina inicial en el extremo 5', el codón de terminación y la señal de poliadenilación en el extremo 3', siendo esta última característica particular del mRNA. El cDNA de branquias fue base para obtener y caracterizar el gen de la LDH.

AG	AGAGCCAGTTCGAACACCAGGTTGGTTGCACGCATCTCTTCAGCTCCTCGACAAAAAGGAAACAAGATGGCCTCTGTTCCTGAAA												87																
М	L	М	Е	Q	I	Q	Ρ	Ρ	L	т	т	S	G	G	K	v	S	V	V	G	V	G	Q	v	G	М	A	С	35
TGCTTATGGAGCAAATCCAGCCTCCCCTGACCACCTCAGGAGGCAAAGTGTCTGTGGTGGTGGTGTTGGCCAGCCGGGAATGGCCTGCG													174																
A	F	S	L	L	т	Q	н	I	С	S	E	L	A	L	v	D	v	A	A	D	K	L	R	G	E	М	М	D	64
CC	CCTTCTCACTCCTGACACAGCACATCTGCTCTGAGCTGGCCCTGGTTGATGTTGCTGCTGACAAGCTGCGTGGAGAGATGATGGATC														261														
L	Q	н	G	L	т	F	L	R	Ν	v	K	I	D	A	Ν	т	D	Y	A	v	Т	A	G	S	R	v	С	I	93
ТC	TCCAGCACGGACTTACATTCCTGAGGAACGTGAAGATTGATGCAAACACCGATTATGCTGTGACAGCTGGCTCTCGTGTGTGCATTG													348															
v	т	A	G	A	R	Q	R	Е	G	Е	S	R	L	S	L	v	Q	R	N	v	D	I	F	ĸ	G	М	I	P	122
ΤΊ	ACT	GCT	GGT	GCT	CGT	CAG	AGG	GAG	GGA	GAG	TCT	CGT	TTG	TCC	CTT	GTA	CAG	CGC	AAC	GTG	GAC.	ATC	TTC.	AAG	GGC.	ATG	ATT	CCCC	435
Q	L	v	ĸ	н	S	Ρ	Ν	С	I	L	L	I	v	S	N	Ρ	V	D	I	L	Т	Y	v	A	W	K	L	S	151
AG	CTG	GTA	AAG	CAT	TCC	CCT	AAC	TGC	ATC	CTC	CTC.	ATT	GTG	TCA	AAC	CCA	GTG	GAT	ATC	CTG	ACC	TAC	GTT	GCA'	TGG	AAA	CTG	TCTG	522
G	L	P	K	Н	н	v	I	G	S	G	т	N	L	D	S	A	R	F	R	F	Н	L	S	Q	K	L	S	v	180
GC	CTC	CCC	AAG	CAC	CAT	GTG	ATC	GGC	TCA	GGC.	ACC.	AAC	CTG	GAC	TCT	GCC.	AGA	TTC	CGC	TTC	CAC	CTG	TCC	CAG	AAA	CTG	AGT	GTCG	609
A	P	S	S	Т	н	G	W	I	I	G	E	Н	G	D	S	S	v	P	V	W	S	G	v	N	v	A	G	v	209
СЛ	CCC	TCG	TCC.	ACC	CAC	GGA	TGG.	ATC	ATT	GGC	GAG	CAT	GGT	GAC	TCC	TCT	GTA	ССТ	GTC	TGG	ГСТ	GGC	GTT	AAT	GTT	GCT	GGT	GTGC	696
R	L	R	D	L	N	Ρ	к	v	G	т	P	Е	D	Ρ	E	K	Y	D	Е	L	Н	K	D	v	v	N	S	A	238
GΊ	CTG	CGT	GAC	TTG	AAC	CCA	AAA	GTG	gga	ACT	CCA	gaa	GAT	ССТ	GAA	AAG	TAT	GAT	GAA	CTC	CAC	AAA	GAT	GTT	GTG.	AAC	AGT	GCAT	783
Y	Е	I	I	K	L	K	G	Y	т	S	W	A	I	G	L	S	v	A	S	L	V	S	S	I	v	K	N	М	267
AI	GAG	ATC	ATC.	AAA	CTG	AAG	GGA	TAC	ACC	TCC	TGG	GCC	ATC	GGT	CTC	TCT	GTC	GCC	TCT	CTG	GTG	TCA	TCT	ATC	GTC.	AAG	AAC	ATGC	880
R	A	С	Y	A	v	S	v	A	v	Q	N	Y	Н	G	I	D	K	D	V	F	L	S	L	P	v	v	L	G	296
GC	GCC	TGC	TAT	GCT	GTC	TCT	GTA	GCT	GTT	CAG.	AAT	TAC	CAT	GGT	ATC	GAC.	AAG	GAT	GTG	TTC	CTG	AGC	TTG	CCT	GTG	GTC'	TTG	GGTG	967
Е	N	G	v	Т	н	v	I	K	Q	т	L	Т	Е	A	Е	I	A	Q	L	Q	K	S	A	N	т	L	W	D	325
AG	AAC	GGT	GTC.	ACT	CAT	GTC	ATC.	AAG	CAG	ACC	CTA.	ACA	GAA	GCT	GAA	ATT	GCT	CAG	CTG	CAA	AAG	тст	GCT.	AAC	ACA	CTC	TGG	GACG1	.054
v	Q	A	G	I	Q	F	•*																						333
ΤΊ	CAG	GCC	GGA	ATT	CAG	TTC	TAA	GGC	GCG	TGA	TGC.	AAC	AAT	GTG	AAG	CTC	TAG	ААА	ACA	ACC	TGA	ССТ	TGA	ACG'	TTC.	AGC	AAT	GGTT	1141
CA	.CGC	TGG	TGG	CAC	TGC	TTG	AAG	GAT	CAA	ATT	TCG.	AGG	AGT	GTA	AAT.	ATA	CTG	CCA	AAC	GAG	AAG	GAA	GAG	AGA	GTT'	TAC	ATG	CTGC	1228
ТA	ATG	TGC	AAT.	ATT	TAT	TTT	GAG	GAT	AGA	ATG	GTT	CTT	GAT	TGT	ACT.	AAG	GAT	GAA	GTA	TTA	ATA	TGC	GGT	TCC	AAT	ACA	GTG	TATT	1315
ТΊ	'GCA'	TTC	TGC'	TGC	ATG	TGC	TTT	TTA	TGT	ATT	CAG	GAG	ATC	ATA	TAG	AGT.	AAT	AAC	TGA	TTA	TGG	CTT	ATT	GGT.	ATA	AGA	GTG	TGAG	1402
ТĢ	CCT	ААА	GGC	CAG	ATA	TAT	GTG.	ATG	AAT	TAG.	AAT	GAT	ATT	ССТ	CAA	AAA.	ААА	ААА	ААА	AAA	ААА	ААА	ААА	AA					1475

M A S V P E

б

Figura 6. Secuencia nucleotídica del cDNA de la LDH de branquias de camarón blanco *L. vannamei* (Rodríguez-Armenta, 2007). En subrayado se señala la metionina inicial, el codón de terminación y la cola poliadenilada.

Secuencia nucleotídica de cDNA de LDH de músculo

Una secuencia nucleotídica del cDNA de la LDH fue obtenida a partir de músculo recientemente por Soñanez-Organis *et al.*, (datos no publicados). La secuencia parcial es de un tamaño de 1018 pb, y se identificó la metionina inicial y el codón de terminación (Figura 8). Al comparar la secuencia nucleotídica del cDNA de la LDH de branquias con la secuencia nucleotídica cDNA de la LDH de músculo, se encontró 96 % de identidad cuando se analizó usando el algoritmo BLAST (Altschul *et al.*, 1990). Estas secuencias parciales de cDNAs de las LDHs fueron clave para la caracterización del gen de la LDH de camarón blanco *L. vannamei*. Las secuencias del cDNA de branquias y músculo difieren en 48 pb, estas secuencias se analizaron llevando a cabo alineamientos múltiples usando el algoritmo CLUSTAL, y el resultado se presenta en la Figura 7. En estas regiones, la secuencias tienen una identidad de 84 % de identidad.

Figura 7. Alineamiento entre las dos regiones diferentes entre los cDNAs de branquias y músculo. En negritas se muestran las bases que son diferentes. Los recuadros representan las regiones idénticas.

Para facilitar la diferenciación de los cDNAs, se optó por llamarlas LDH1 a la obtenida de branquias y LDH2 a la derivada de músculo. Su comparación con secuencias reportadas en la base de datos GenBank usando el algoritmo BLASTX (Altschul *et al.*, 1990), detectó se un alto porcentaje de identidad de ambas, con diferentes especies (Tabla 5). Tanto LDH1 como LDH2 tienen un alto porcentaje de identidad con distintas LDHs de diferentes especies de moscas (Tabla 5), con 69 y 70 % de identidad. Ambas tienen también alta identidad con organismos vertebrados e invertebrados sin tener grandes diferencias, ya que se encuentran en 66 % de similitud de manera general (Tabla 5).

Tabla 5. Identidad de la LDH a nivel de nucleótidos con proteínas homologas de otras especies

Organismos	N° de acceso Genbank	% de identidad cDNA Branquias	% de identidad cDNA Músculo
Invertebrados			Wuseulo
Invertebrados			
Culex quinquefasciatus	XP 001866924.1	68 %	69 %
Aedes aegypti	XP 001662150.1	69 %	69 %
Drosophila yakuba	XP 002093920.1	69 %	69 %
Drosophila virilis	XP 0020047314.1	69 %	69 %
Drosophila melanogaster	NP_476581.1	69 %	70 %
Drosophila mojavensis	XP 002007947.1	69 %	70 %
Drosophila erecta	XP 001972110.1	69 %	70 %
Glossina morsitans morsitans	ADD18974.1	67 %	68 %
Tribolium castaneum	XP 968203.1	67 %	65 %
Apis mellifera	XP 394662.3	68 %	68 %
Caenorhabditis remanei	XP 003117501.1	67 %	67 %
Caernorhabditis briggsae	XP 002631314.1	67 %	67 %
Vertebrados			
Equus caballus	NP 001138583.1	62 %	62 %
Iguana iguana	ANN05099.1	65 %	64%
Macaca mulatta	XP 00108554.1	62 %	64 %
Mus musculus	NP 001129541.2	60 %	64 %

М	A	S	V	Ρ	Ε	М	L	М	Е	Q	I	Q	Ρ	Ρ	L	Т	Т	S	G	G	K	V	S	V	V	G	V	G	29
ATC	GCC	CTC	ſGTΊ	CCI	GA	AAT(GCT	ΓΑΤG	GAG	CA	ATC	CCAG	GCCI	rcco	ССТС	GAC	CACC	CTCI	AGG.	AGG	CAA	AGTG	TC	ГGТ(GGT	GGGI	GTI	GGC	87
Q	V	G	М	A	C	A	F	S	L	L	Т	Q	н	I	C	S	Е	L	A	L	v	D	v	A	A	D	K	L	58
CAC	GTC	GGGI	ATG	GCC	CTG	CGC	CTT	CTCA	CTC	CTC	GACO	GCAG	GCAC	CAT	CTGO	CTC	IGAC	GCTO	GC	CCT	GGT.	rgat	GT.	rgc:	rgc:	rgac	'AAC	GCTG	174
R	G	Е	М	М	D	L	Q	н	G	L	Т	F	L	R	N	v	K	I	D	A	N	т	D	Y	A	v	т	A	87
CGI	GGI	AGAC	GATO	GATO	GAT	rct(CCAC	GCAI	'GGA	CTI	FAC	ATTO	CCTO	GAG	GAAC	CGT	GAAC	JATI	[GA	TGC	AAA	CACC	GA:	TTA:	rgc:	rgto	ACA	AGCT	261
G	S	R	v	С	I	v	т	A	G	A	R	Q	R	Е	G	E	S	R	L	S	L	v	Q	R	N	v	D	I	116
GGC	TCT	rcgi	ГGTO	TGC	CAT	rgt:	FAC:	ГGCТ	GGT	GCI	rcgi	rcag	GAGG	GAG	GGGI	AGA	GTCI	rcgi	rtt(GTC	CCT	ГGTA	CAC	GCG	CAAG	CGTO	GAC	CATC	348
F	K	G	М	I	P	Q	L	v	к	Н	S	P	N	C	I	L	L	I	v	S	N	P	v	D	I	L	т	Y	145
TTC	CAAC	GGG	CATO	GATI	rcco	CCAG	GCTO	GGTA	AAG	CAT	TTC	CCCI	TAAC	CTG	CATO	CCT	ССТС	CATI	[GT	CTC	AAA	cccc	GT	GGA	TATO	CCTO	ACC	CTAC	435
v	A	W	к	L	S	G	L	P	к	н	н	v	I	G	S	G	т	N	L	D	S	A	R	F	R	F	н	L	174
GTT	GCZ	ATGO	3882	ACTO	TC	rgg	ССТО	2000	AAG	CAC	CAT	rgro	ATC	GGG	CTC	AGG	CACO	'AA(CT	GGA	CTC	rgcc	'AG/	ATT(CCG	TTTC	CAC	CTG	522
c	0	л к	т.	q	17	7	Б	q	q	Ţ	ц	G	TAT	т	т	G	г. г		G	л.	q	c	v	 Б	17	TAT	c	G	203
TO	× ranc	1. 77 77		ט חסמי			TCC	ט גישייר	TCC	1				⊥ ידער	ד ידע ריי					TCA			v OTT 7	1	v Tranta	יייירי			600
	.CAC	<i>3P1P1</i>		AGI		-90.	-	- 104	-	.AC(_GGF			_AI.		_GAC	-		IGA			G17			- 160			009
V	N	V	A	G	V	R	Ц	R	D	Ц	N	Р	ĸ	V	G	.1.	Р	E	D	Р	E	K	Y	D	E	Ц	н	K.	232
GTI	'AA'	rgt1	ГGCΊ	GGI	GTO	GCG	ГСТО	GCGI	'GAC	'TTC	JAAC	CCCF	AAA	AGT	3GG2	AAC:	FCCF	AGAZ	AGA'	TCC'	TGA/	AAAG	TA:	rga:	rga <i>i</i>	ACTC	CAC	CAAA	696
D	V	V	Ν	S	A	Y	Е	V	I	K	М	K	G	Y	Т	S	W	A	I	G	Т	S	С	A	V	L	Т	R	261
GAI	GTI	rgto	GAAC	CAGI	GC.	[TAT	rga(GGTG	ATC	'AAC	GATO	GAAG	GGA	ATA(CAC	rtc/	ATGO	GCC	CAT'	TGG	AAC.	TCA	TG:	rgc:	rgt:	ГСТА	ACC	CAGG	783
A	I	L	Т	N	Q	R	Т	V	Y	A	V	S	Т	S	V	Q	Ν	Y	Η	G	I	D	K	D	V	F	L	S	290
GCC	CAT	ГСТС	CACG	SAAC	CA	ACG	FAC:	ГGТТ	TAC	GCC	CGTO	GTCI	FACA	AG.	rgt <i>i</i>	ACA	GAAT	TAC	CCA'	TGG	TATO	CGAC	'AA(GGA.	ГGТ(GTTC	CTO	GAGC	870
L	Ρ	V	v	L	G	Е	Ν	G	v	Т	Η	v	I	K	Q	Т	L	Т	Е	A	Е	I	A	Q	L	Q	K	S	319
TTC	GCCI	ГGТ(GGTC	CTTO	GGG	rga	GAAG	CGGI	GTC	'AC'	rca1	ГGTC	CATC	CAA	GCAG	GAC	CCTA	AACA	AGA	AGC	rga <i>i</i>	ATT	GC.	rca(GCTO	GCAA	AAG	STCT	957
I	1 4	1 1	ΓI	J V	V I	r c	V Ç	Q A	G	;]	ΓÇ	2 F	r *																333
GCI	AAC	CAC	ACTO	CTGO	GAG	CGT	ГСА	GGCI	'GGA	ATT	CAC	GTTC	TAP	AGG	CGC	GTG	ATGO	CAAC	'AA	ΓG								:	1018

Figura 8. Secuencia parcial de cDNA de la LDH de músculo de camarón blanco *L. vannamei* Soñanez- Organis *et al.*, (datos no publicados). En subrayado se muestra la metionina inicial y el codón de terminación.

Secuencia nucleotídica y deducida de aminoácidos del gen de la LDH de camarón blanco *L. vannamei*

La secuencia nucleotídica del gen de la LDH se obtuvo a partir de dos fragmentos grandes (Figura 10), un fragmento 5' de 4233 pb y un fragmento 3' de 3338 pb. Estos fragmentos se traslapan en la posición 4233 pb por 300 pb. Las secuencias de los cDNAs de branquias y de músculo fueron comparadas directamente con la secuencia genómica ensamblada de 7571 pb, usando BLAST y el programa DNASTAR, lo que permitió conocer la secuencia deducida en aminoácidos, facilitando con ello la identificación de las regiones codificantes y no codificantes. Así, se logró definir que la región coincide 100% con las secuencias de cDNA y de donde se deduce la región codificante de 1,125 pb, la cual corresponde a 373 aminoácidos más el triplete del codón de terminación. La gran diferencia en la longitud de estas secuencias permitió deducir que el gen de la LDH de camarón blanco *L. vannamei* tiene 8 exones y 7 intrones los cuales varían considerablemente en tamaño. En la secuencia del gen de la LDH *L. vannamei* se identificó la metionina inicial, algunos codones divididos y el codón de terminación (Figuras 9 y 10).

Entre las secuencias de los cDNAs de branquias y músculo existe una región única, es decir está presente en solo una de ellas. La región del cDNA de branquias está presente en la región 4282 a 4291 pb del gDNA, mientras que la de músculo se encuentra en la región 4565 a 4574 pb del gDNA. Lo anterior, permite deducir que en branquias está presente el exón 5, mientras que en músculo está presente el exón 6. La presencia de uno de ellos excluye la presencia del otro, permitiendo identificar la existencia de dos cDNAs derivados de los mRNAs generados por el corte y empalme, uno derivado del cDNA de músculo y otro, del cDNA de branquias, dando lugar a proteínas muy similares que difieren solo en una pequeña región. Estas proteínas deducidas son así, subunidades diferentes de la LDH. El corte y empalme alternativo también ocurre en el gen de la LDH-C de humanos, y resulta con dos mensajes diferentes que difieren en el extremos 5' en la región no traducida. Para generar el primer mensaje se excluye un intrón de 66 pb, y para el segundo mensaje se excluye un intrón de 27 pb (Cooker *et al.*, 1993).

М	A	S	V	Ρ	Ε	М	L	М	Е	Q	I	Q	Ρ	Ρ	L	Т	Т	S	G	G	ĸ	V	S	V	v	G	V	G	Q	30
ATG	GC	CTC	rgt1	rcc1	ſĠĂĬ	AATO	GCTT	'ATG	GAG	GCAA	ATC	CAG	CC.	rcco	CCTG	ACC	CACO	CTCA	AGGA	.GGC	'AAA	GTO	TCT	GTO	GTC	GGG	ΓGTΊ	'GG(CCAG	90
V	G	М	A	С	A	F	S	L	L	Т	Q	Η	I	С	S	Е	L	A	L	V	D	V	A	A	D	K	L	R	G	60
GTG	GGI	AATO	GGCC	CTGO	CGC	CTTC	CTCA	CTC	CTO	GACG	CAG	CAC	'AT(CTGC	CTCT	GAG	GCTC	GGCC	CCTG	GTT	'GA'I	GTI	GCT	GCI	GAC	CAA	GCTG	CG	rgga	180
Е	М	М	D	L	Q	Н	G	L	Т	F	L	<u>R</u>																		73
GAG	AT(GAT(GA'I			ACA'I	GGA	CT'I	'ACF	ATTC	CTG	<u>AG</u> g + + +	tgg	ggtt aatt	ttc	att	gato +++	otta etta	aggc atta	atc	agt	cat	.ctt	aat	gto	tto	gttt Sott	tai	tact	270
ccc	aad	ccc	cact		ccaa	agct	gtt	gtt	tct	tct	ctt	ctt	ttt	ctt	ctc	tct	ctt	aca	ata	tac	taa	iaat	acc	ctg	jaat	ati	act	aca	ag <u>G</u>	449
N	v	K	I	D	A	N	Т	D	Y	A	V	т	A	G	S	R	v	С	I	V	Т	A	G	A	R	Q	R	Е	G	103
AAC	GT	GAAG	GATI	rga1	rgcz	AAAC	CACC	GAT	'TAT	IGCT	GTG	ACA	GC.	rggo	CTCT	CGI	GTO	GTGC	CATT	GTT	'AC'I	GCI	GGT	GCI	CGI	rca(GAGG	GA	GGGA	539
Е	S	R	L	S	L	V	Q	R	N	v	D	I	F	K	G	М	I	Ρ	Q	L	V	K	Н	S	P	N	С	I	L	133
GAG	TC	rcg:	TTTO	GTCO	CCT	TGTA	ACAG	CGC	'AAC	CGTG	GAC.	ATC	TTC	CAAG	GGC	ATO	GAT	rcco	CCAG	CTG	GTA	AAG	CAT	TCC	CCI	[AA]	CTGC	'AT	CCTC	629
L	I	V	S	Ν	Ρ																									139
CTC	AT:	ГGT	CTCF	AAA	CCC	CGgt	gag	rttt	tgt	tgt	att	gtc	taa	atat	tga	.gaa	atat	tga	itaa	tat	tto	ttg	ıgaa	aat	tat	taa	aaaa	aaa	aaaa	719
aac	cti	tcto	catt	aaa	agt	tagt	att	gtg	jago	cagt	gtc	aga	caa	attt	tgt	act	aad	ctat	aca	tta	cag	lago	ıcta	tga	agg	ggti	catg	cta	aaaa	809
												V	<u> </u>	I C	L	, I	C 3	ΥV	7 A	. W	I K	I	S	G	3 I	L L	P K	1	H	156
tct	ati	ttct	cctt	aag	ggta	aaco	ctt	tcc	ttt	ttt	ttc	ag <u>1</u>	' <u>G</u> GI	ATAI	CCT	'GAC	CCTA	ACGI	TGC	ATG	GAA	ACI	GTC	TGG	GCCI	rcco	CCAA	.GC2	AC	897
Н	V	I	G	S	G	Т	N	L	D	S	A	R	F	R	F	Н	L	S	Q	К	L	S	V	A	Ρ	S	S	Т	Н	186
CAT	GT	GATO	CGGC	CTC	AGG	CACC	CAAC	CTG	GAC	CTCT	GCC.	AGA	TT(CCGC	CTTC	CAC	CCTC	GTCC	CCAG	AAA	CTG	AGI	GTC	GCI	CCC	CTCI	ATCC	AC	CCAC	987
G	W	I	I	G	Е	н	G	D	S	S																				197
GGA	TG	GAT	CATI	rggo	CGA	GCAI	GGT	GAC	TCC	CTCT	<u>G</u> gt	aag	igaa	aact	tga	.gat	ttt	caaa	atat	ttt	cto	aaa	cat	gtt	aag	gato	gtga	.cag	gaaa	1077
cat	990	aaa	Jaco	igge	lago	acgg	jeta	aag	Jayo	itgt	acy	Laa	995	JUUS	jcac	ugu	-991	Laac	age	Laa	aat	, L L L	Jaca	gu		iaay	ycaa	.cg	Jacc	1107
																				V	Ρ	V	W	S	G	V	Ν	V	A	207
tat	tat	ttgt	tgta	aggt	gt	gagg	ıttg	aac	tga	atct	gtt	tgt	tta	aaco	acc	tca	atti	tcc	caca	g <u>TA</u>	CCJ	GTC	TGG	TCI	GGG	CGT.	FAAT	GT	ГGCT	1257
G	v	R	L	R	D	L	N	Ρ	K	v	G	Т	Ρ	Е	D	Ρ	Е	К	Y	D	Е	L	н	K	D	V	v	Ν		236
GGT	GT	GCGI	FCT C	GCGI	rga	CTTO	GAAC	CCA	AAA	AGTG	GGA	ACT	CCI	AGAA	GAT	CCI	GA	AAA	TAT	GAT	GAA	CTC	CAC	AAA	GAT	rgt:	FGTG	AA	C <u>AG</u> g	1347
taa	att	ttct	ccct	tto	ccci	ttga	igcc	ttc	ggt	ata	att	tat	aaa	agta	icga	gag	gttt	cctt	tat	ttt	ato	ttc	tgt	cat	aag	gtto	cact	act	tcat	1437
gat	cgt	ttt	taa	aad	cgi	tggt	gta	lcta	laat	ttc	cat	ttc	att	tta	ttt	ttg	gatt	tag	jaat	tac	tct	.gtg	gat	gaa	act	tai	.gac	at	gtaa	1527
ata	aug	taca	aaa		Jyrı tad	actt	.yay .cat	cac	.gcc	aat	++++	at a	+++	atta	 htta	ata	aca	tat	jiai tta	+++	att.	.yyc tat	+++	aug +++	aya ++/	at di	- att	att	++++	1707
ttt	tto	acto	acto	cta	aco	catt	aaa	att	tat	att	cat	att	t.ct	.at.a	it.ca	aat	aat	ata	aaaa	t.aq	aaa	ittt	tac	cta	aad	rcat	gat	t.t.c	cact	1797
ttt	tgt	tatt	agt	tat	tt	gaat	att	aaq	ata	aat	ttt	ttc	gtt	tco	age	ato	ittt	gta	igaa	atg	tta	ata	tgt	att	ttt	ta	ccto	at	gatt	1887
tat	att	tctt	cat	tct	agt	- ttaa	ittg	aat	agg	gcag	tcg	tct	tad	ctac	ttc	agt	tta	acta	acag	age	tgt	tat	taa	taa	itca	att	gtgt	gci	tcat	1977
ata	gtt	tcta	aata	agtt	tti	tgat	agt	taa	laag	jaaa	taa	ctg	rcta	aago	tta	gag	gat	gaga	actc	tgg	ago	aat	gtg	ttg	jago	ati	caac	cta	acct	2067
gac	taa	aago	gtaa	agg	gtgg	gggt	tca	gaa	itto	cacc	cct	taa	tc	gact	gag	ago	ctad	caag	jcga	tgg	ttt	tgo	ccc	atg	lada	aaa	ggaa	gaa	aaat	2157
aat	aga	atgt	cggo	ttt	gct	ttct	gac	taa	lagt	tta	ttt	ctg	rtt	gcto	cct	gtg	gtco	ccta	ata	gtg	ata	att	tgc	tta	aat	tti	gtt	tt	gttt	2247
tgt	tti	ttt	gata	actt	gag	gtta	laat	tca	ICCa	act	act	tgc	gaa	atca	iccg	cat	gco	cctt	gct	taa	.gtt	cca	ttt	ttt	ttt	tci	gct	cat	tctg	2337
tgt	tt!		gata - 2~-	actt	gag	gtta +++-	aat	tca		act	act	tgo	gaa +~+	atca		cat	gco	cctt	gct	taa	.gtt +~+	cca	ttt	ttt	ttt		.gct	cat	tetg	2427
000 ttp	ant	900 ⊢+++	-ayc		-aCl	acto	nt arg	it as	itas	it dt	.cag ata	uac tac	. Lyl	-aya atar	icd0	auc tat	-acc	2008 4+++	ildű ato	tat	ct=		ate	tat	ilya ++/	2 L L (3 + + +	-tat	uda. a a f	acya tatt	25⊥/ 2607
taa	aat	taat	tat	:tt:	att	taat	tta.	att	ato	att	tar	agt	ata	acac agat	taa	aac	iat†	att	aaa	gaa	att	ato	icaa	t.++	tat	, I - + + +	.att	tt:	attt	2697
tt.t	at.1	ttt	tac	raad	aad	gtar	aat	tat	atr	tat	att	dao	iat.t	.gat	.qaa	tta	act	tat	tct	ccc	tat	cca	itaa	atic	rat.c	raad	act.+	at.	agag	2787
agt	tad	ccto	ccga	agto	caa	gaac	jaca	aca	ictt	gta	gtt	taa	ca	gtct	tga	cat	att	tct	ttt	taa	agt	caa	atc	cto	aaa	acgt	rggo	tco	cttt	2877
ttt	cat	tgtt	zaga	aat	tti	tgat	ttg	rttt	tcc	cata	tag	aaa	tga	agaa	itgg	aga	aat	gga	ata	ggt	tgt	ttt	tac	tgo	aga	atto	cagt	gt	ggtc	2967
tgg	aag	gtct	gta	atga	aaaa	aatg	gcat	tta	iaag	gtga	taa	aac	at	gtca	aaa	.gca	acco	cate	gaat	gag	aat	gto	agg	aca	act	tt	gtag	caa	aaaa	3057
tgc	act	tat	gate	gtag	gat	gaag	lcdc	tga	laag	gctc	ctg	tca	ctt	ttc	ctc	cto	cctt	ctt	tcc	aaa	act	ttt	aaa	att	ggg	jagt	tgc	at	tcac	3147

gaataaataaataaataaatttgaaactaaaatataagagcataaaatgagaaagctgcagggaagagagatactttataactattgtt 3417 $tatgttaatgatcttgacgacgtacttttcctttttatttgagaggtttgataaaagacggaaagtattcaaataattttcttgagagat \ 3687$ ctttatacatgagagcgcatttagatcttattttctctagctactatatcactagccaaggcgatatctacaaaaataggttaattgtgg 3777 gctggccaaacttgtccaaaagggtatcagtagcttggtctgtttctctccatagtgcggactcattaagataaaggcgacatttgagag 3867 ggtttgctttgcttctgtcctttcagctcaaaatttctctttattctgtgtacaatctttttttatttttatatatcatttgtagatatc 3957 tgatataagcatatccactttactggtaaattatgttctaaattaatgtgtaggttaacactagcttagacagcctaccgaatactttag 4047 aagagattgatgaaaaaggaagatcaatgagagccatagataagctaaagtttaagatttcattttttgtttcaaagaaacaagctcata 4137 240 <u>s</u> a y e $\texttt{ttcttaagaaagagaatagtgttgtctatttcccttgcctatgattatgcttggcattgtactctgagtggtttgcag\underline{T}GCATATGAG$ 4225 I I K L K G Y T S W A I G L S V A S L V S S I V K N M R A C 270 ATCATCAAACTGAAGGGATACACCTCCTGGGCCATCGGTCTCTCTGTCGCCTCTCTGGTGTCATCGTCAAGAACATGCGCGCCCTGC 4315 YAVSVAVQ 278 S A Y E V I K M K G Y T S W A I G T S C A V L T R A I L T 307 ${\tt cagtgcttatgaggtgatcaagatgaagggatacacttcatgggccattggaacttcatgtgctgttctaaccagggccattctcacg$ 4583 NQRTVYAVSTSVQ 320 AACCAACGTACTGTTTACGCCGTGTCTACAAGTGTACAGgtaccagatgatagctggaggagctgcagtgtcctgctgtgtattttcttt 4673 ${\tt tgttttttccctcctttttcatctctgaagctctgcattttcttttcctctggtgcattttgagccagtttttaaaatctttttcccttg \ 4763$ atccccgctcctttttcatgactcagagagaaagaaaaaaagataatcatgctgatgattccaaaaatttcagaataaatcttttgtaa 4853 $\texttt{tcattggactaatgcgaatattggctgaacttactctaagccattttataccatgtcagaaaagaaaaaaaggagaacattgcctctt \ 4943$ $tgaacagtcgtgatggtagtagtagtagtacttttcttcaatgtatttgaaagacaattcttaatttagaaaaaaaggaaaaaatcaa \ 5033$ attggtccatgaaaactacatacttgcctctgtgttaccggtatgcatgtttagatttaccaagttaactttaacgaggtttcagattct 5123 at atttgttaccctgacttggttcttagatttagatatttcattatatttaaatttttattacctttatataattttagtgatatgctt 5213tgatgtgcataatgtatcccaatccaggaataacaagtttctgacaaccatatccagtataaagcagtgatttttcttttctctttcc 5303aggaaagcatacgttgccattgctgtgtgtgtcaaatctttagccatgttcagcaacttagattttatgcagtgtataccctttcagatga 5483 ttaaagctacgtttctgccacttgtacacaccagcttgcaaagattggcatatctattaggaaaaagatgccaaagactactgcagatga 5573 aagaaattgtattttttttatatttttttatatctatgtattctagaatatattcttccaaattatgcgattagttgtaaggttatactg 5663 tacatatgtgagatgaattatttgaagagtgaaataattttatggttaccttagtgttatgaaattcaccctttgaggtttgtagctgag 5753 aggagggacatatactagggtattttttgataattctgcaactaaatgagtgatataattctgaaatgattttgttggaaaaaggtataat 5843gactcagcaaatatctactttaaatataagcctacagctaaattgtgccgtgatatgacaaaattgccaagtttgtaggatgtaagcact 5933 atgacatactacaaaggtaggataatattaggattatatattggtaagttagaatagtactcatcattaaagagagaataacatttatca 6023 $gagttggataattgcctaattttgctgaaacagtgtgaatagatgacatagtagacagtaagatgttagaaatgctgacatagttgtata \ 6203$ $\texttt{tagtagtgctgcaaatggtggcaattatgtatattattttttatgtttaggattaattgtctctttagaagtgtgaccatagaaaagt \texttt{6293}$ $\texttt{tataaatttgatcttgaattttgtcttaaacctaagtcaggtataatttccttggattaaccataacctttttgtttttggaatgtttata \ 6473$ $\tt tttatttataagtgatagtacgtaaccataaggcaaatttctccatcatctgatatttaatagaatagtttatagtttggggcattattg~6833$ NYHGIDKDVFLSLPVVLGENG 341 ctataatacctgttctctttgcattagAATTACCATGGTATCGACAAGGATGTGTCCTGAGCTTGCCTGTGGTCTTGGGTGAGAACGGT~6923V T H V I K Q T L T E A E I A Q L Q K S A N T L W D V Q A G 371

GTCACTCATGTCATCAAGCAGACCCTAACAGAAGCTGAAAATTGCTCAGCTGCAAAAGTCTGCTAACACACTCTGGGACGTTCAGGCTGGA 7013

42

IQF*

374

${\tt ATTCAGTTCTAAggcgcgtgatgcaacaatggtaatgtgtggtggtagttcttattaccaagtgaagatttctgttgctttctccattttg$	7103
${\tt atgcatgtaataaaaaaaaacaagtcttggtcacatgttgaatcattagaaggcattttgctggtcatttattatcatagatggaatctta$	7193
${\tt attaatgttgttccagtgcgttgtctaatgacttacgaaattttctttc$	7283
TCAGCAATGGTTCACGCTGGTGGCACTGCTTGAAGGATCAAATTTCGAGGAGTGTAAATATACTGCCAAACGAGAAGGAAG	7373
ACATGCTGCTAATGTGCAATATTTACTTTGAGGATAGAATGGTTCTTGATTGTACTAAGGATGAAGTATTAACATGCAGTTCCAATACAG	7463
TGTATTTTGCATTCTGCTGCATGTGCTTTTTTATGTATTCAGGAGATCATATAGAGTAATAACTGATTATGGCTTATTGGTATAGGGAGTG	7553
TGAGTGCCTAAAGGCCAG	7571

Figura 9. Secuencia nucleotídica y deducida de aminoácidos del gen de la LDH. La secuencia de los exones se presenta en mayúsculas y la de los intrones en minúsculas. La numeración a la derecha corresponde a la secuencia nucleotídica o de aminoácidos. Los codones divididos y el aminoácido correspondiente están subrayados.

Figura 10. Mapa del gen de la LDH de camarón blanco *L. vannamei*. Diagrama de corte y empalme alternativo de los mensajes de LDH1 y LDH2. Ubicación de oligonucleótidos e identificación de los fragmentos 5' y 3'. En gris obscuro en los paneles A y B se presentan los exornes, mientras que los intrones se muestran en blanco. El cuador gris punteado corresponde al exón localizado en el 3"-UTR.

En la Figura 10 se muestra el mapa del gen de la LDH del camarón blanco *L. vannamei* mostrándose la existencia de corte y empalme que da lugar a dos proteínas diferentes. En el inciso A se muestra el cDNA de la LDH de branquias (LDH1), el cual tiene una región codificante de 999 pb y al comparar con el gen de LDH se identificaron 6 exones los cuales dan lugar a una proteína de 333 aminoácidos. En el inciso B se muestra el cDNA de la LDH que se expresa en músculo (LDH2), el cual tiene una región codificante de 999 pb dando lugar a una proteína diferente a la que se traduce con el cDNA de la LDH de branquias. El exón 5 se encuentra presente en el cDNA de branquias (LDH1) y no el cDNA de músculo (LDH2), mientras que el exón 6 se encuentra presente en el cDNA de músculo y no en el cDNA de branquias. El gen de la LDH da lugar a dos proteínas de 333 aminoácidos. Este gen posee un exón 8 (Figura 10), el cual no es codificante para aminoácidos, pero se encuentra en la región 3'-UTR del gen de la LDH. En el inciso C se muestran los dos fragmentos obtenidos del gen de la LDH, ubicando las posiciones y los oligonucleótidos con los que se obtuvo los dos fragmentos. En el inciso D se muestra la escala usada en el mapa.

Composición de bases de los exones e intrones del gen de la LDH de camarón blanco L.vannamei

El gen de la LDH de camarón blanco *L. vannamei* posee 8 exones de distintos tamaños (Tabla 6), de los cuales solo 7 codifican para cada una de las dos proteínas diferentes, debido a la presencia de corte y empalme alternativo (Figura 10). El número, tamaños y localización de los exones (Tabla 6) son similares a lo encontrado en *Homo sapiens*. En humanos hay 7 exones con tamaños de 150, 118, 174, 176, 118, 124 y 162 pb. El tamaño del exón 3 de *L. vannamei* corresponde al tamaño del exón 3 de *Homo sapiens* indicando una alta conservación (Chung *et al.*, 1985). La composición de bases de los exones e intrones del gen de LDH es diferente. La base más abundante en promedio es T, seguida de G, C y A. El promedio general de G+C es de 49.53 %, mientras que el de A+T es de 50.46 % teniendo una diferencia en porcentaje de 0.93%. Tomando en cuenta que el exón 8 no se encuentra presente en la región codificante de la proteína, pero si en el gen de LDH de *L. vannamei*, es interesante encontrar que en este caso, la composición de bases es mas desigual, teniendo un porcentaje de G+C de 39.44 % comparado con los otros exones. Este

valor es por debajo de 46 % que corresponde al exón 6 y que después del exón 8, el valor de G+C es más bajo. Si se omite el exón 8, el promedio de G+C de los exones sube hasta 50.97%.

Exones	Tamaño						
	(nt)	% A	% G	% T	% C	% A+T	% G+C
1	218	19.27	28.90	25.23	26.61	44.29	55.71
2	200	21.50	25.50	26.50	26.50	48.48	51.52
3	174	20.11	22.99	22.99	33.91	43.10	56.90
4	118	27.12	27.12	26.27	19.49	52.99	47.01
5	124	19.35	23.39	29.03	28.23	48.41	51.59
6	126	26.19	24.60	26.98	22.22	53.17	46.83
7	165	26.67	24.85	26.06	22.42	52.73	47.27
8	322	30.12	24.84	30.43	14.60	60.56	39.44
Promedio		23.79	25.27	26.69	24.25	50.46	49.53

Tabla 6. Composición de bases de los exones

En invertebrados es poco lo que se conoce de genes de la LDH. Como ya se mencionó anteriormente, el nemátodo *C. elegans* tiene 2 pequeños intrones de un tamaño de 57 y 47 pb, que están localizados en posiciones similares a los intrones 2 y 6 de los genes de LDH de vertebrados, demostrando conservación de la estructura de este gen (Mannen *et al.*, 1995). En la mosca de la fruta *Drosophila melanogaster* también se han realizado estudios del gen de la LDH, el cual tiene 4 exones y 3 intrones. La región codificante del gen de la LDH *Drosophila* tiene un 58 a 61 % de identidad y un 71 a 75 % de similitud con la LDH-A, -B y -C de humanos (Robin *et al.*, 1997). Al comparar el gen de LDH de *D. melanogaster* con el gen de LDH de *L. vannamei* se observó que el exón 3 de *D. melanogaster* tiene 80 % de identidad con el exón 7 de *L. vannamei*. La LDH de humanos posee 7 intrones en posiciones muy conservadas, mientras que el gen de la LDH de *Drosophila* tiene 3 intrones (Robin *et al.*, 1997), siendo ambos así, genes interrumpidos

por intrones. El gen de la LDH de *L. vannamei* tiene 7 intrones y 8 exones, el último localizado en la región 3' no traducida (3'UTR) y por lo tanto no codificante para aminoácidos. Solo 7 exones están en los mRNA maduros. La LDH1 tiene los exones 1, 2, 3, 4, 5 y 7; mientras que la LDH2, tiene los exones 1, 2, 3, 4, 6 y 7. Así, una tiene solo el exón 5, mientras la otra el exón 6, generados por el corte y empalme alternativo. En la comparación en los tamaños de los intrones y posiciones de los genes de LDH de vertebrados (Cooker *et al.*, 1993; Fukasawa *et al.*, 1986; Takano *et al.*, 1989; Takeno y Li, 1989) se encontró que son similares y que aunque *L. vannamei* pertenece al grupo de los invertebrados, este gen es también interrumpido por 6 intrones en la región codificante, al igual que los de vertebrados.

La composición de bases de los intrones es diferente a la de los exones (Tabla 7), con el valor más alto para T, seguido de A, G y finalmente C. Las regiones intrónicas tienen un promedio general de A+T de 66.14 % y de G+C de 33.86 % con una diferencia de 32.28 %. Esto contrasta con la composición de exones de G+C con 49.53 %, mientras para los intrones es de 33.86 %, características clásicas de las regiones codificantes de tener un mayor contenido de C+G (Lewin, 2008).

Intrones	Tamaño						
	(nt)	% A	% G	% T	% C	% A+T	% G+C
1	230	16.96	10.00	46.96	26.09	63.91	36.09
2	199	33.67	15.58	38.69	12.06	72.36	27.64
3	207	33.82	22.71	33.82	9.66	67.63	32.37
4	2869	30.05	17.11	37.96	14.88	68.00	32.00
5	157	34.39	24.84	22.29	18.47	56.69	43.31
6	2238	31.81	16.62	37.40	14.16	69.21	30.79
7	224	27.23	20.09	37.95	14.73	65.18	34.82
Promedio		29.70	18.14	36.44	15.72	66.14	33.86

Tabla 7. Composición de bases de los intrones

Las posiciones de las regiones codificantes del gen de LDH de *L. vannamei* se muestran en la Tabla 8, indicando el inicio y final de los diferentes exones, su tamaño, la existencia de cuatro codones divididos, su respectivo aminoácido y la región correspondiente de unión a ligandos en la proteína. El primer codón dividido ocurre entre el primer y segundo exón produciendo un codón dividido con las bases AG en el exón 1 y G en el exón2; este codón da lugar a arginina, siendo interrumpido por el intrón 1. El segundo codón dividido ocurre entre el exón 3 y exón 4 y corresponde a valina, al igual que el tercer codón dividido el cual se encuentra entre el tercer exón y el cuarto. El cuarto codón dividido se encontró en entre el cuarto y quinto exón y corresponde a serina.

También en la secuencia del gen de la LDH se identificaron los aminoácidos correspondientes a las regiones de unión a ligandos (Tabla 8). En humanos, en los genes de la LDH-A, LDH-B y LDH-C se encuentran presentes 4 codones divididos, el primer codón dividido se encuentra ubicado entre el los exones 2 y 3, correspondiendo al aminoácido asparagina, mientras que el segundo codón divido se encuentra entre los exones 3 y 4 y corresponde a valina; al igual que el tercer codón dividido, éste se encuentra ubicado entre el cuarto y quinto exón y por último el cuarto codón dividido se encuentra entre el quinto y sexto exón, correspondiendo a serina (Chung *et al.*, 1985; Takano *et al.*, 1989; Takeno y Li, 1989). Al comparar los cuatro codones divididos de *L. vannamei* con los de humano, se pudo observar que el segundo y tercer codón corresponde al mismo aminoácido el cual es valina, al igual que el cuarto codón el cual corresponde a serina (Chung *et al.*, 1985; Takano *et al.*, 1

		Tamaño	Codón	Región	específica y
Exones	Posición	(nt)	dividido/aminoácido	ami	inoácidos
1	1-218	218	AG_G/R	NAD	M33 al K57
				(unión a)	
2	449-648	200	G_TG/V		R99 y N138
3	848-1021	174	G_TA/V		
4	1229-1346	118	AG_T/S	Piruvato	R106,R169,T248
				(unión a)	
5	4216-4339	124			
6	4497-4622	126		Sitio Activo	H193
7	6861-7025	165			
8	7249-7571	322	UTR - 3'		

Tabla 8. Posiciones de los exones, codones divididos y regiones de unión a ligandos en la LDH

Respecto a sitios específicos de la proteína deducida, se identificaron los sitios de unión a NAD que corresponden al aminoácido M33 y K57, así como los aminoácidos R99 y N138. Los sitios de unión a piruvato se encuentran en los aminoácidos R106, R169, T248, mientras que el del sitio de activo se encuentra en H193.

Los intrones del gen de la LDH de *L. vannamei* tienen regiones consensos comunes a la mayor parte de los intrones, las cuales son GT en el extremo 5' y AG en el extremo 3'. En la Tabla 9 se muestra una secuencia corta del inicio 5' y termino 3' de cada uno de los intrones. El análisis de estas secuencias encontró que las bases con mayor frecuencia en el extremo 5' son G con 100 % y T con 90 % mientras que en el extremo 3' la base A tuvo un 90 % y G un 80 % y que en comparación con las bases intermedias, éstas tienen un porcentaje mucho menor, de aproximadamente 65 %. En humanos en los genes LDH-A,

LDH-B y LDH-C también hay conservación de las secuencias consenso de GT en 5' y AG en 3' (Chung *et al.*, 1985; Takano *et al.*, 1989; Takeno y Li, 1989). Como se mencionó anteriormente en invertebrados es poco lo que se conoce. Sin embargo, en el gen de la LDH de *Drosophila* también cuenta con las regiones conservadas GT en el 5' y AG en el 3' (Robin *et al.*, 1997).

Por lo anterior, el gen de la LDH del camarón tiene las secuencias aceptoras y donadores canónicas de los intrones de eucariotas, a pesar de las grandes diferencias entre los grupos de invertebrados y vertebrados. Por otro lado, de forma interesante y como se ha visto con otras proteínas de camarón como la GST Mu (Contreras- Vergara *et al.*, 2004), la LDH de camarón parece ser mas similar a los homólogos de vertebrados que a los de invertebrados como la del nemátodo *C. elegans* (Mannen *et al.*, 1995). En estudios realizados por (Cristescu *et al.*, 2008) se comparó la evolución de la LDH de vertebrados con la LDH de invertebrados y al igual que en este trabajo se concluyó que la LDH de invertebrados tiene tiene una alta similitud con la LDH de vertebrados. Por lo anterior, es importante que se realicen más estudios relacionados a la estructura y función de esta enzima que permitan discernir no solo las similitudes, sino también sean útiles para explorar si forman parte de mecanismos específicos de tolerancia o adaptación de las especies de camarones peneidos o de crustáceos a las bajas concentraciones de oxígeno.

Tabla 9. Extremos de 5' y 3' de los intrones y secuencias consenso

Intrones	Inicio											Termino										
	Posición 5'											Posición 3'										
1	219 pb	g	t	g	g	g	t	t	t	t	c	448 pb	a	t	t	a	c	t	а	c	а	g
2	649 pb	g	t	g	а	g	t	t	t	t	g	847 pb	t	t	t	t	t	t	t	c	а	g
3	1022 pb	g	t	а	а	g	g	a	а	а	c	1228 pb	t	t	t	t	c	c	a	c	а	g
4	1347 pb	g	t	а	а	a	t	t	t	c	t	4215 pb	t	g	g	t	t	t	g	c	а	g
5	4340 pb	g	t	а	t	g	t	g	g	g	t	4496 pb	t	g	с	с	a	c	t	t	а	c
6	4623 pb	g	t	а	c	c	a	g	a	t	g	6860 pb	t	t	t	g	c	a	t	t	a	g
7	7026 pb	g	g	c	g	c	g	t	g	а	t	7249 pb	t	t	t	c	t	c	c	a	c	а
Secuencia consenso		g	t	a	a	g	t	t	t	t	t		t	t	t	t	с	c/t	t	С	a	g
Porcentaje		100	90	70	60	70	70	70	60	60	60		90	80	80	60	60	60	60	70	90	80

51

CONCLUSIONES

El gen de la lactato deshidrogenasa de camarón blanco *L. vannamei*, es de 7571 pb y tiene 7 intrones y 8 exones. Los primeros 7 exones corresponden a la secuencia codificante, mientras que el exón 8 se encuentra en el extremo 3' UTR, o región no codificante. Los intrones tienen las secuencias canónicas en los brazos aceptores y donadores de los intrones. Los exones 1, 2, 3, 4, 5, 6 y 7 generan dos mRNAs diferentes en una pequeña región y que se generan por corte y empalme alternativo, mientras que el exón 8 se encuentra en la región 3' UTR. El exón 5 se encuentra presente en el cDNA aislado de branquias (LDH1) y no en el aislado de músculo (LDH2), mientras que el exón 6 se encuentra presente en el cDNA aislado de músculo y no en el cDNA de branquias.

La estructura del gen de la LDH de *L. vannamei* tiene alta similitud con los genes homólogos de vertebrados, ya que este gen es interrumpido por el mismo número de intrones y en posiciones muy similares aunque varían en sus tamaños. Estudios posteriores son necesarios para profundizar en el conocimiento del promotor y su forma de regulación a nivel transcripcional y a nivel de proteína.

BIBLIOGRAFÍA

- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990). Basic Local Alignment Search Tool J Mol Biol 215, 403-410.
- Bradfield, J.Y., Wyatt, G.R. (1983). X-linkage of a vitellogenin gene in *Locusta migratoria* Chromosoma 88, 190-193
- Castelló Orvay, F. (1993). Acuicultura marina: Fundamentos biológicos y tecnología de la producción Primera Ed (Barcelona, España Universitat de Barcelona).
- Contreras-Vergara, C.A., Harris-Valle, C., Sotelo-Mundo, R., Yepiz- Plascencia, G. (2004). A Mu- Class Glutathione S-Transferase from the Marine Shrimp *Litopenaeus vannamei:* Molecular Cloning and Active- Site Structural Modeling J Biochem Mol Toxicol 18, 245-252.
- Cooker, L.A., Brooke, C.D., Kumari, M., Hofmann, M.C., Millán, J.L., Goldberg, E. (1993). Genomic structure and promoter activity of the human testis lactate dehydrogenase gene. Biol Reprod 48, 1309-1319.
- Cristescu, M.E., Innes, D.J., Stillman, J.H., Crease, T.J. (2008). D- and L-lactate dehydrogenases during invertebrate evolution. BMC Evol Biol 1, 268.
- Chung, F.Z., Tsujibo, H., Bhattacharyya, U., Sharief, F.S., Li, S.S. (1985). Genomic organization of human lactate dehydrogenase-A gene. Biochem J 231, 537-541.
- Dall, W., Hill, B.J., Rothlisberg, P.C., Sharples, D.J. (1990). *The Biology of the Penaeidae* (Academic Press, London).
- Fukasawa, K.M., Li, S.S. (1987). Complete nucleotide sequence of the mouse lactate dehydrogenase-A functional gene: comparison of the exon-intron organization of dehydrogenase genes. Genetics 116, 99-105.
- Fukasawa, K.M., Li, W., Yagi, K., Luo, C.C., Li, S.S. (1986). Molecular Evolution of Mammalian Lactate Dehydrogenase-A Genes and Pseudogenes: Association of a Mouse Processed Pseudogene with a B1 Repetitive Sequence. Mol Biol Evol 3, 330-342.
- Gladden, L.B. (2004). Lactate metabolism: a new paradigm for the third millennium J Physiol 558, 5-30.
- Gómez-Anduro, G.A. (2005). Caracterización y expresión de los genes de superoxido dismutasa con manganeso en camarón blanco *Litopenaeus vannamei*. Tesis de Doctorado. Centro de Investigación en Alimentación y Desarrollo, A.C.
- Hill, R. (2007). Fisiología Animal Comparada: un enfoque ambiental (Ed. Reverté, S.A. Barcelona, España).
- Hill, R.W., Gordon, A. (2006). Fisiología Animal (Ed. Médica Panamericana. Madrid, España).
- Huang, J., Wu, X., Du, W., Yu, X. (2008). Identification, expression, characterization, and immunolocalization of lactate dehydrogenase from *Taenia asiatica*. Parasitol Res 104, 287-293.

- Imagawa, T., Yamamoto, E., Sawada, M., Okamoto, M., Uehara, M. (2006). Expression of Lactate Dehydrogenase-A and -B Messenger Ribonucleic Acids: Chick Glycogen Body. Poultry Sci: 85, 1232-1238.
- Lewin, B. (2008). Genes IX, Novena Ed. (Cambridge University).
- Mannen, H., Steven, S.L., Li (1995). The lactate dehydrogenase gene from nematode *Caenorhabditis elegans* contains only two of six introns conserved in the proteinencoding sequence of LDH genes from bird and mammals. Biochem Mol Biol Int *37*, 1057-1061.
- Martínez-Cordova, L.R. (2002). Camaronicultura avances y tendencias, Primera Ed (AGT Editores, S.A. México, D.F.).
- Martínez-Cordova, L.R., Martínez, P., Cortés, J. (2009). Camaronicultura mexicana y mundial: ¿actividad sustentable o industria contaminante? Rev Int Contam Ambient 25, 181-196.
- Mathews, C.K., Holde, K.E., Ahern, K.G. (2003). Bioquímica, Tercera edn (Ed. Pearson Educación, S.A., Madrid).
- Robin, L., Abu, S., Fristom., J.W. (1997). IMP-L3, A 20- Hydroxyecdysone-Responsive Gene Encodes *Drosophila* Lactate Dehydrogenase: Structural Characterization and Developmental Studies. Dev. Genet. 20 11-22
- Rodríguez-Armenta, M. (2007). Caracterización del Gen de la Lactato Deshidrogenasa (LDH) y Expresión de Genes en Branquias del Camarón Blanco *Litopenaeus* vannamei bajo cambios agudos de oxígeno y salinidad. Tesis de Maestría. Centro de Investigación en Alimentación y Desarrollo, AC (Hermosillo, Sonora).
- Sakai, I., Sharief, F.S., Li, S.S. (1987). Molecular cloning and nucleotide sequence of the cDNA for sperm-specific lactate dehydrogenase-C from mouse. Biochem J 242, 619-622.
- Sambrook, J., Russell, D.W. (2001). Molecular cloning: a laboratory manual. (Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press).
- Sánchez-Paz, A., García-Carreño, F., Peregrino-Uriarte, A.B., Hernández-López, J., Yepiz-Plascencia, G. (2006). Usage of energy reserves in crustaceans during starvation: status and future directions. Insect Biochem Mol Biol 36, 241-249.
- Sanger, F., Nickel, S., Coulson, A.R. (1977). DNA sequencing with chain terminator inhibitors Proc. Nat. Acad. Scie. USA 74, 5463-5467.
- Soñanez-Organis, J.G. (2006). Caracterización y expresión de los genes de Hexocinasa, Fosfofructosinasa y Piruvato Cinasa de Camarón Blanco *Litopenaeus vannamei*. Tesis de Maetría. Centro de Investigación en Alimentación y Desarrollo, AC (Hermosillo, Sonora).
- Soñanez-Organis, J.G. (2010). Regulación de los genes glucolíticos hexocinasa y lactato deshidrogenasa por el factor inducido por hipoxia 1 en el camarón blanco *Litopenaeus vannamei* Tesis de Doctorado. Centro de Investigación en Alimentación y Desarrollo, AC (Hermosillo, Sonora).
- Tacon, A.G.J. (1990). Standard methods for the nutrition and feeding of farmed fish and shrimp Vol 1 (Redmond, Washington U.S.A., Argent Laboratories Press).

- Takano, T., Steven, S., Li, S. (1989). Human testicular lactate dehydrogenase-c gene is interrupted by six introns at positions homologous to those of LDH-A (muscle) and LDH-B (heart) genes. Biochem Biophys Res Comm *159*, 579-583.
- Takeno, T., Li, S.S. (1989). Structure of the human lactate dehydrogenase B gene. Biochem J 257, 921-924.
- Verri, T., Mandal, A., Zilli, L., Bossa, D., Mandal, P.K., Ingrosso, L., Zonno, V., Vilella, S., Ahearn, G.A., Storelli, C. (2001). D-Glucose transport in decapod crustacean hepatopancreas Comp Biochem Physiol *130A*, 585-606.
- Yang, S., Parmley, S.F. (1997). *Toxoplasma gondii* expresses two distinct lactate dehydrogenase homologous genes during its life cycle in intermediate hosts Gene 184, 1-12.
- (http://noticias.universia.es/ciencia-nn-tt/noticia/2006/05/24/598475/acuicultura-cultivomar.html) consultado el 02-12-10
- (http://www.panoramaacuicola.com/noticias/2010/09/23/acuicultura_renovado __nicho_de_oportunidad_en_mexico.html) consultado el 02-12-10